# Math - Calculus

posted by .

Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2].

Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues? ...Other than simply using my TI-84, I have no idea how to accomplish this.

## Similar Questions

1. ### Math Calculus

The Image Theorem: The image theorem, a corollary of the intermediate value theorem, expresses the property that if f is continuous on the interval [a, b], then the image (the set of y-values) of f on [a,b] is all real numbers between …
2. ### calculus

Verify that the Intermediate Value theorem applies to the indicated interval and find the value of c guaranteed by the theorem. f(x) = x^2 - 6x + 8, [0,3], f(c) = 0 I have no idea how to use the theorem :(
3. ### calculus

Show that the function f(x)=4x^3−15x^2+9x+8 satisfies the three hypotheses of Rolle’s theorem on the interval [0,3]. Then find the values of c on the interval [0,3] that are guaranteed by Rolle’s theorem. Give your answer …
4. ### calculus

Referring to the Mean Value Theorem and Rolle's Theorem, how can I tell if f is continuous on the interval [a,b] and differentiable on (a,b).
5. ### AP Calculus

Show that the equation x^3 - 15x + c = o has exactly one real root. All I know is that it has something to do with the Mean Value Theorem/Rolle's Theorem.
6. ### Math - Calculus

Show that the equation x^3-15x+c=0 has at most one root in the interval [-2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues?
7. ### Math

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval. x^4+x-3=0, interval (1,2). According the to theorem, I found that a is 1, b is 2 and N is 0. f(1)= 2 and f(2) = 17. Is …
8. ### Math

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval. cos x = x. How do I begin this problem?
9. ### Calculus

Verify the hypothesis of the mean value theorem for each function below defined on the indicated interval. Then find the value “C” referred to by the theorem. Q1a) h(x)=√(x+1 ) [3,8] Q1b) K(x)=(x-1)/(x=1) [0,4] Q1c) Explain …
10. ### Math

Let f(x) = 2x + 1 − sin(x), how many roots does f(x) have in the interval [−π, π]?

More Similar Questions

Post a New Question