Post a New Question

Physics

posted by .

A 3.60 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.80 m, before compressing a spring of force constant 2.30*10^4 N/m. Find the maximum compression of the spring.

Any help would be appreciated, this problem is to use Spring Potential Energy; Conservation of Energy. If you could explain how you get the answer it would be greatly appreciated.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. College Physics

    A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
  2. College Physics

    A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
  3. College Physics

    A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
  4. College Physics

    A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
  5. College Physics

    A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
  6. physics

    A 0.50-kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring …
  7. physics

    A 0.50-kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring …
  8. physics please help :/

    A 0.50-kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring …
  9. physics

    A 4.6 kg block starts at rest and slides a distance d down a frictionless 31.0° incline, where it runs into a spring. The block slides an additional 24.0 cm before it is brought to rest momentarily by compressing the spring, whose …
  10. Physics

    A 3.20 kg block starts at rest and slides a distance d down a frictionless 30.0° incline, where it runs into a spring (Fig. 8-6). The block slides an additional 23.0 cm before it is brought to rest momentarily by compressing the spring, …

More Similar Questions

Post a New Question