Physics help!

posted by .

An extreme skier, starting from rest, coasts down a mountain that makes an angle of 26.7 ° with the horizontal. The coefficient of kinetic friction between her skis and the snow is 0.248. She coasts for a distance of 10.5 m before coming to the edge of a cliff. Without slowing down, she skis off the cliff and lands downhill at a point whose vertical distance is 4.88 m below the edge. How fast is she going just before she lands?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    a 61 kg skier on level snow coasts 184 m to stop from a speed on 12.0 m/s. A) use the work energy principle to find the coefficient of kinetic friction between the skis and the snow. B) suppose a 75 kg skier with twice the starting …
  2. Physics

    A 61 kg skier on level snow coasts 184 m to stop from a speed of 12.0 m/s (A) use the work energy principle to find the coefficient of kinetic friction between the skis and the snow. B) suppose a 75 kg skier with twice the starting …
  3. physics

    an extreme skier starting from rest, coasts down a mountain that makes an angle 25.0¨¬with the horizontal. The coeffiecient of kinetic friction between her skis and the snow is 0.200. She coasts for a distance of 8.4m before coming …
  4. Physics

    A 61.8 kg skier coasts up a snow-covered hill that makes an angle of 26.0° with the horizontal. The initial speed of the skier is 6.10 m/s. After coasting a distance of 1.86 m up the slope, the speed of the skier is 4.48 m/s. Calculate …
  5. Physics 1

    A 64.9 kg skier coasts up a snow-covered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate …
  6. physics

    A 64.9 kg skier coasts up a snow-covered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate …
  7. physics

    A 64.9 kg skier coasts up a snow-covered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate …
  8. physics

    A 60 kg skier with an initial speed of 12 m/s coasts up a 2.5 m high rise that makes a 35 degree angle with the horizontal. If the coefficient of friction between the skis and the snow is .08, find the speed of the skier when he reaches …
  9. physics

    An extreme skier, starting from rest, coasts down a mountain slope that makes an angle 25.0° with the horizontal. The coefficient of kinetic friction between her skis and the snow is 0.200. She coasts for a distance of 13.8 m before …
  10. physics

    A 64.2-kg skier coasts up a snow-covered hill that makes an angle of 23.8° with the horizontal. The initial speed of the skier is 7.18 m/s. After coasting 1.96 m up the slope, the skier has a speed of 3.13 m/s. Calculate the work …

More Similar Questions