posted by .

A continuous function f, defined for all x, has the following properties:

1. f is increasing
2. f is concave down
3. f(13)=3
4. f'(13)=1/4

Sketch a possible graph for f, and use it to answer the following questions about f.

A. For each of the following intervals, what is the minimum and maximum number of zeros f could have in the interval? (Note that if there must be exactly N zeros in an interval, the minimum and maximum are both N.)

−INF <x<= 0
0 <x<=1
1<x<13
13<=x<INF
I need the maximum and minimum... I just have the two first ones... 0 for both 1 and 2 maximum and minimum... then I really don't know what to do..

B. Are any of the following possible values for f'(1)? (Enter your answer as a comma-separated list, or enter 'none' if none of them are possible.) −3, −2, −1, −51, 0, 51, 1, 2, 3.
possible values: f'(1)=_________

C. What happens to f as x−>- INF?
lim x−> INF f(x)= ________

(Enter the value, 'infinity' or '-infinity' for or −, or 'none' if there is no limit.)

For a function to be increasing on ℝ and concave downwards, it must:
1. have no maximum/minimum, because it is a one-to-one function.
2. Crosses the x-axis (or any other y-value) at most once, since it is an increasing function.
3. Since it is concave down, d²y/dx² must be negative.

Study the above statements. If you do not know why they are true, refer to your notes, your textbook, or post.

I have taken an example function that satisfies these two properties is f(x)=3-e^(-x). (There may be many other functions that have these properties.) See the following link for its graph:
http://img268.imageshack.us/i/1298419029.png/

A. Since we know that f(13)>0, then the zero of the function, if any, must happen when x<13 for an increasing function. Beyond 13, x continues to increase, and therefore cannot have zeroes.

B. If f'(13)=1/4, and we know that f"(x) is negative throughout the domain of f(x), what can you say about f'(x) for x>13? Would it not be true that f'(x)<1/4 for x>13?
So what happens to to f'(x) <13?

C. The limit for the example function is 3, (but f(x) does not satisfy the required conditions of f(13)=3 and f'(13)=1/4.) Some parameters are required. It was just for illustration purposes.

## Similar Questions

1. ### calculus

Consider the exponential function . Which of the following best describes the the graph of g?
2. ### Calculus

Let f be the function defined for x >or= to 0 with f(0)=5 and f', the first derivative of f, give by f'(x)=e^(-x/4)sin(x^2). A) Use the graph of f' to determine whether the graph of f is concave up, concave down, or neither on the …

A continuous function f, defined for all x, has the following properties: 1. f is increasing 2. f is concave down 3. f(13)=3 4. f'(13)=1/4 Sketch a possible graph for f, and use it to answer the following questions about f. A. For …
4. ### calculus

Given f(x)=sin(x)-2cos(x) on the interval [0,2pi]. a) Determine where the function is increasing and decreasing. b) Determine where the function is concave up and concave down. ________________________________________ I know: f′(x)=cos(x)+2sin(x) …

6. ### Calculus

Suppose that f(x), f'(x), and f''(x) are continuous for all real numbers x, and the f has the following properties. I. f is negative on (-inf, 6) and positive on (6,inf). II. f is increasing on (-inf, 8) and positive on 8, inf). III. …
7. ### calculus

You are given that f(x) =1+ax+ax2 f′(x) =−(x+2)ax3 f′′(x) =(2x+6)ax4 and the constant a>0. Write down all intervals on which the function is increasing, decreasing, concave up or concave down. (Enter using …
8. ### Calculus

Sketch the graph of the function that has the following properties. f is continuous on (-infinity, infinity). points: (-1,2), (0, 0), (-1,0) f'(x)>0 at (-infinity, -1) f'(-1)=0 f'(x)<0 at (-1, 1) f'(1)=0 f'(x)>0 on (1, infinity) …
9. ### Calculus really quick check

The graph of f ′(x) is continuous and decreasing with an x-intercept at x = 2. Which of the following statements must be true?
10. ### Calculus

Given the graph of f'(x) with f(x) continuous on all reals, find the intervals f(x) is concave up and down and find the X values of the points of inflection. I did points -2 concave down to 2 then concave up 4.

More Similar Questions