advance algebra
posted by AA .
1(2)+2(3)+3(4)+...+n(n+1)= n(n+1)(n+2)/2
using the mathematical induction.
please help..

1(2)+2(3)+3(4)+...+n(n+1)= n(n+1)(n+2)/3
(Note: The denominator is 3, not 2)
Basis: n=1
1(2)=2
1(2)(3)/3=2
n=1 is valid.
Assume:
1(2)+2(3)+3(4)+...+k(k+1)= k(k+1)(k+2)/3
is valid for k=n
then try to prove that the relation is valid for k=n+1.
1(2)+2(3)+3(4)+...+n(n+1) + (n+1)(n+2)
= n(n+1)(n+2)/3 + (n+1)(n+2)
= ( n(n+1)(n+2)+3(n+1)(n+2) )/3
= ( n^3+6*n^2+11*n+6 )/3
= (n+1)(n+2)(n+3)/3
= (n+1)*(n+1 +1)*(n+1 +2)/3
which means that the expression is valid also for n+1. QED
Respond to this Question
Similar Questions

math
how do you prove that (a1) divides ((a^n)1) evenly using mathematical induction 
advance algebra
2(2^1) +3(2^2) + 4(2^3)+...+n^3 = [n(n+1)/2]^2 using the mathematical induction please help! 
mathematical induction
solve this using the mathematical induction : 1/1(3)+1/3(5)+1/5(7)+......+1/(2n1)(2n+1)=n/(2n+1) 
AP Calc
Use mathematical induction to prove that the statement holds for all positive integers. Also, can you label the basis, hypothesis, and induction step in each problem. Thanks 1. 2+4+6+...+2n=n^2+n 2. 8+10+12+...+(2n+6)=n^2+7n 
Calculus
Use mathematical induction to prove that the statement holds for all positive integers. Also, label the basis, hypothesis, and induction step. 1 + 5 + 9 + … + (4n 3)= n(2n1) 
Algebra
Prove by mathematical induction that 3^(3n+1) + 2^(n+1) is divisible by 5 
precalculus
Can you please check my answers? 1.Find Pk + 1 if Pk=2^K1/k! answer: 2^k+1/(k+1)! 2.Find Pk + 1 if Pk = 7 + 13 + 19 + ...+[6(k  1)+1] + (6k + 1) answer: 7+13+9...(6k1+1)+6k+1 +(6k+2) 3.What is the first step when writing a proof 
precalculus
Find Pk + 1 if Pk = 7 + 13 + 19 + ...+[6(k  1)+1] + (6k + 1) 7 + 13 + 19 + …+[6(k  1) + 1] + (6k + 1) + [6(k + 1) + 1] 8 + 14 + 20 + …+[7(k  1) + 1] + (7k + 1) 7 + 13 + 19 + …+(6k + 1) 7 + 13 + 19 + ...+[6(k  1) + 1] + (6k7 … 
Mathematical Induction
I have been given that a1 = 1 and an+1 = 1/3*(an + 4). In order to prove that this sequence is monotonous, what is the second step of mathematical induction? 
Mathematical Induction
Use mathematical induction to prove that the following is true. 8+11+14...+(3n+5)=1/2n(3n+13), for all n in the set of natural numbers.