# calculus

posted by .

How do I find the indefinite integral of h(u)=sin^2(1/5u) this is one fifth u. Does it involve double angle formulas? Thanks.

## Respond to this Question

 First Name School Subject Your Answer

## Similar Questions

1. ### Calculus

Hello Everyone, I need help with Calc II. 1. Integral from 0 to 1 of (sin(3*pi*t))dt For this one, I got -1/3pi cos (9 pi^2) + 1/3pi 2. indefinite integral of sinxcos(cosx)dx I got sin(cosx) + C 3. Indefinite integral of x over (root …
2. ### trig integration

s- integral endpoints are 0 and pi/2 i need to find the integral of sin^2 (2x) dx. i know that the answer is pi/4, but im not sure how to get to it. i know: s sin^2(2x)dx= 1/2 [1-cos (4x)] dx, but then i'm confused. The indefinite …
3. ### MATH

1.)Find the exact solution algebriacally, if possible: (PLEASE SHOW ALL STEPS) sin 2x - sin x = 0 2.) GIVEN: sin u = 3/5, 0 < u < ï/2 Find the exact values of: sin 2u, cos 2u and tan 2u using the double-angle formulas. 3.)Use …
4. ### calculus

Evaluate the indefinite integral. integral of 8 sin^4 x cos x dx
5. ### calculus

Evaluate the indefinite integral. integral of 4e^(4x)sin[e^(4x)]dx
6. ### calculus please help

I posted this below but had no response. I would appreciate help with details please.How do I find the indefinite integral of h(u)=sin^2(1/5u) this is one fifth u. Does it involve double angle formulas?
7. ### trig

Given that sin (pi/10)=(sqrt(5)-1)/4, use double-angle formulas to find an exact expression for sin(pi/5).
8. ### calculus

Using an integration formula,what is the indefinite integral of (sign for integral)(cos(4x)+2x^2)(sin(4x)-x)dx. Any help very much appreciated.
9. ### Calc BC

1. Find the indefinite integral. Indefinite integral tan^3(pix/7)sec^2(pix/7)dx 2. Find the indefinite integral by making the substitution x=3tan(theta). Indefinite integral x*sqrt(9+x^2)dx 3. Find the indefinite integral. Indefinite …
10. ### Calculus

"Leave the answer as a definite integral, but indicate how it could by evaluated by using the fundamental theorem of calculus." I solved the problem to a definite integral. Proceeding via the fundamental theorem, would involve finding …

More Similar Questions