AP PHYSICS MECH.

posted by .

In Figure 9-62, block 2 (mass 1.3 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 160 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 2.1 kg), traveling at speed v1 = 4.0 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    In Figure (a), a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring …
  2. physics

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 8.0 J of work is required to compress the spring by 0.17 m. If the mass is released from rest with the spring …
  3. Physics

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 3.0 J of work is required to compress the spring by 0.17 m. If the mass is released from rest with the spring …
  4. Physics Spring

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 1.0 J of work is required to compress the spring by 0.12 m. If the mass is released from rest with the spring …
  5. PHYSICS

    A block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched …
  6. Physics

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 5.5 J of work is required to compressed the spring by 0.16 m. If the mass is released from rest with the spring …
  7. physics

    A solid block of mass m2 = 8.3 kg, at rest on a horizontal frictionless surface, is connected to a relaxed spring. The other end of the spring is fixed, and the spring constant is k = 210 N/m. Another solid block of mass m1 = 12.4 …
  8. Physics

    A block of mass M=6 kg and initial velocity v=0.8m/s slides on a frictionless horizontal surface and collides with a relaxed spring of unknown spring constant. The other end of the spring is attached to a wall. If the maximum compression …
  9. physics

    A solid block of mass m2 = 1.0 $kg$, at rest on a horizontal frictionless surface, is connected to a relaxed spring (with spring constant k = 260 N/m whose other end is fixed. Another solid block of mass m1 = 2.4 kg and speed v1 = …
  10. science

    A 4.50 g mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end of the spring is fixed to a wall. It takes 3.6J of work to compress the spring by 13.0 cm. If the spring is compressed, and …

More Similar Questions