Algebra

posted by .

Suppose H(x)=(sqrt5x+3).
Find two functions f and g such that (fog)(x)= H(x) .

f(x)=
g(x)=
Neither function can be the identity function.
(There may be more than one correct answer.)

  • Algebra -

    g(x) = sqrt(5x)
    f(x) = x + 3

  • Algebra -

    Thank you

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math

    How do I know that x^2-7=y is a function?
  2. pre calc

    The Identity Function The Squaring Function The Cubing Function The Reciprocal Function The Square Root Function The Exponential Functional Lo The Natural Logarithum Function The Sine Function The Cosine Function The Absolute Value …
  3. precalculus

    Precalculus-------Give an example of three functions f,g,h none of which is a constant function such that?
  4. precalculus

    Suppose g is an even function and f is any function such that the composition fog is defined. show that fog is an even function
  5. precalculus

    Suppose f is an even function and g is an odd function such that the composition fog is defined.d show that fog is an even function
  6. algebra

    Give am example of a function f.N N with the property that there exists a function g. N N such that the composition got is the identity function on N but for no function h. N N does it hold that fog is the identity function on N.Prove …
  7. Algebra

    (5)^-1/2 * (5x)^5/2 (5x)^-3/2 = 1/5*sqrt5x^5(1/sqrt5x^3)= sqrt5x^5/sqrt5*sqrt5x^3= x^2 sqrt5x/ sqrt5 * x sqrt5x= x^2/x sqrt5= x/sqrt 5 Is this correct?
  8. Precalculus

    Suppose H(X)=(3-7x)^6 Find two functions f and g such that (f•g)(x)=H(x) Neither function can be the parent/ identity function
  9. ALGEBRA 1 HELP

    The description below represents Function A and the table represents Function B: Function A The function is 2 more than 5 times x. Function B x y -1 2 0 5 1 8 Which statement is correct about the slope and intercept of the two functions?
  10. Precalculus

    Suppose H(X)=(6x-5)^3 Find two functions f and g such that (f•g)(x)=H(x) Neither function can be the parent/ identity function

More Similar Questions