Post a New Question

Math

posted by .

(Factoring a sum or difference of cubes) and (solving a polynomial equation).

2x^3+2=0

  • Math -

    2x^3+2=0
    divide by 2
    x^3 +1=0
    now you have a sum of cubes
    (x+1)(x^2-x+1)=0
    x=-1 or x = (1 ± ?-3)/2 or (1 ± i?3)/2

  • Math -

    Factor the given equation into:
    2x³+2 =0
    => 2(x²+1)=0

    and use one of the identities:
    x³+y²=(x+y)(x²-xy+y²)
    x³-y²=(x-y)(x²+xy+y²)
    to factor the given equation to linear and quadratic factors.

    Hence solve the resulting linear and quadratic equations.

Answer This Question

First Name
School Subject
Your Answer

Related Questions

More Related Questions

Post a New Question