calculus
posted by daani .
A 24ft high conical water tank has its vertex on the ground and radius of the base is 10 ft. If water flows into the tank at a rate of 20 ft3/min, how fast is the depth of water increasing when the depth of the water is 20 ft?

The vertex is on the ground, so the tank is in a funnel position.
Let the water height be h, then the radius of the surface of water is r(h)=10h/24=5h/12
The volume at a height of h is
V(h)=(π/3)r(h)² h
=(π/3)(5h/12)² h
=(25π/432)h³
Differentiate with respect to time, t
dV(h)/dt
=(25π/432)*3h²dh/dt
=(25π/144)h² dh/dt
Since dV(h)/dt is known (=20 ft³/min), you can solve for dh/dt.
Note that the unit of dh/dt is in ft/min.
Respond to this Question
Similar Questions

Math
A conical water tank with vertex down has a radius of 10 feet at the top and is 29 feet high. If water flows into the tank at a rate of 10 , how fast is the depth of the water increasing when the water is 17 feet deep? 
Calculus
A water tank is shaped like an inverted right circular cone with a base radius of 14 feet and a height of 25 feet high. If water flows into the tank at a rate of 20 ft^3/min, how fast is the depth of the water increasing when the water … 
math
Water is being pumped into an inverted right circular conical tank at the rate 30 ft^3/min. the tank, which stands vertex down and base up, has a height of 12 ft and a base diameter of 16 ft. how fast is the water level rising when … 
calculus
A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet … 
math  calc
A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
math  calc
A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
Math
A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14 feet … 
Math
A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14 feet … 
Calculus (math)
A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
math
A conical water tank with vertex down has a radius of 13 feet at the top and is 28 feet high. If water flows into the tank at a rate of 10 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet …