earth
posted by Anonymous .
On planet Tehar, the freefall acceleration is the same as that on Earth but there is also a strong downward electric field that is uniform close to the planet's surface. A 2.00 kg ball having a charge of 5.00 µC is thrown upward at a speed of 29.2 m/s and it hits the ground after an interval of 4.40 s. What is the potential difference between the starting point and the top point of the trajectory?
Respond to this Question
Similar Questions

physics help 3!! **
Based on the following data about planet X (which orbits around the Sun): Planet X's distance from Sun = 3.6*1012 m Planet X's radius = 2*106 m Planet X's mass = 8.2*1022 kg a.) Find gx, the size of the acceleration due to gravity … 
physics
On planet Tehar, the acceleration of gravity is the same as that on Earth but there is also a strong downward electric field with the field being uniform close to the planet's surface. A 2.16 kg ball having a charge of 4.80 uC is thrown … 
earth
On planet Tehar, the free fall acceleration is the same as that on the Earth, but there is also a strong downward electric field that is uniform close to the planets surface. A 2.00k ball having a charge of 5.00C is thrown upward at … 
physics
On planet x, an object weighs 10.4N. On planet B where the magnitude of the free fall acceleration is 1.48g (where g=9.8 m/s^2 is the gravitational acceleration on Earth),the object weighs 24.6N. The acceleration of gravity is 9.8 … 
earth
The acceleration due to gravity on planet X is one fifth that on the surface of the earth. If it takes 4.6 s for an object to fall a certain distance from rest on earth, how long would it take to fall the same distance on planet X? 
Free Fall
The acceleration due to gravity on planet X is one fifth that on the surface of the earth. If it takes 3.9 s for an object to fall a certain distance from rest on earth, how long would it take to fall the same distance on planet X? 
mechanics
please help solve these questions (1a). The gravitational field strength g on the earth’s surface is 9.8N/kg. explain what this means.(b) Using the law of gravity, show that gr2= k. Where g=gravitational field strength at a distance … 
mechanics
please help solve these questions (1a). The gravitational field strength g on the earth’s surface is 9.8N/kg. explain what this means.(b) Using the law of gravity, show that gr2= k. Where g=gravitational field strength at a distance … 
mechanics
please help solve these questions (1a). The gravitational field strength g on the earth’s surface is 9.8N/kg. explain what this means.(b) Using the law of gravity, show that gr2= k. Where g=gravitational field strength at a distance … 
Physics
At the surface of a certain planet, the gravitational acceleration g has a magnitude of 12.0 m/s^2. A 21.0kg brass bell is transported to this planet. What is (a) the mass of the brass ball on the Earth and on the planet, and (b) …