Calculus

posted by .

If
12x − 52 ≤ f(x) ≤ x2 + 4x − 36
determine lim x→ 4 f(x) =

What theorem did you use to arrive at your answer?

  • Calculus -

    on the left, as x>4, 48-52
    On the right, as x>4, 16+16-36

    so
    -4<=f(x)<=-4
    so, squeezed from the right, squeezed from the left, lim f(x) x>4 = -4

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math: Pre Cal

    f(x) = {−8 if −3 ≤ x ≤ 0 {x if 0 < x ≤ 3 Evaluate the given expressions. a)f(-1)= b)f(0)= (^Teach how to do this.) What is the formula?
  2. Calculus

    If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a≤ M(b − a). Use this property to estimate …
  3. Calculus

    If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a≤ M(b − a). Use this property to estimate …
  4. Grade 12 Calculus

    Determine the maximum and minimum of each function on the given interval. a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4 b)  = 12x − x^3 ,  x∈ [−3,5]
  5. calculus

    Determine the maximum and minimum of each function on the given interval. a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4 b)  = 12x − x^3 ,  x∈ [−3,5]
  6. calculus

    Determine the maximum and minimum of each function on the given interval. a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4 b)  = 12x − x^3 ,  x∈ [−3,5]
  7. CALC

    Determine the maximum and minimum of each function on the given interval. a)  = 2x^3 − 9x^2 ,−2 ≤ x ≤ 4 b)  = 12x − x^3 ,  x∈ [−3,5]
  8. probability

    Let Sn be the number of successes in n independent Bernoulli trials, where the probability of success for each trial is 1/2. Provide a numerical value, to a precision of 3 decimal places, for each of the following limits. You may want …
  9. Calculus

    Let f be a function such that f(−6)=−6, f(6)=6, f is differentiable for all real values of x and −1≤f'x≤1 for all real values of x. Prove that f(x)=x for all −6≤x≤6 I tried applying the …
  10. Calculus

    f is a continuous function with a domain [−3, 9] such that f(x)= 3 , -3 ≤ x < 0 -x+3 , 0 ≤ x ≤ 6 -3 , 6 < x ≤ 9 and let g(x)= ∫ f(t) dt where a=-2 b=x On what interval is g increasing?

More Similar Questions