physics
posted by Me .
A 60 kg skier with an initial speed of 12 m/s coasts up a 2.5 m high rise that makes a 35 degree angle with the horizontal. If the coefficient of friction between the skis and the snow is .08, find the speed of the skier when he reaches the top of the rise.
How much work does friction do on the skier?
This is a conservation of energy type of problem!

The work done on friction=mu*mgCos35*2.5/sin35
change of PE=mg*2.5
InitialKE=FinalKEchangePEfrictionwork
find the final speed. 
The final formula should read
FinalKE= InitialKeChangePEWfriction
hope this helps anyone doing this problem for homework!
Respond to this Question
Similar Questions

Physics
a 61 kg skier on level snow coasts 184 m to stop from a speed on 12.0 m/s. A) use the work energy principle to find the coefficient of kinetic friction between the skis and the snow. B) suppose a 75 kg skier with twice the starting … 
Physics
A 61 kg skier on level snow coasts 184 m to stop from a speed of 12.0 m/s (A) use the work energy principle to find the coefficient of kinetic friction between the skis and the snow. B) suppose a 75 kg skier with twice the starting … 
Physics
A 61.8 kg skier coasts up a snowcovered hill that makes an angle of 26.0° with the horizontal. The initial speed of the skier is 6.10 m/s. After coasting a distance of 1.86 m up the slope, the speed of the skier is 4.48 m/s. Calculate … 
Physics 1
A 64.9 kg skier coasts up a snowcovered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate … 
physics
A 64.9 kg skier coasts up a snowcovered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate … 
physics
A 64.9 kg skier coasts up a snowcovered hill that makes an angle of 25.4° with the horizontal. The initial speed of the skier is 8.67 m/s. After coasting a distance of 1.92 m up the slope, the speed of the skier is 4.33 m/s. Calculate … 
physics
A 64.2kg skier coasts up a snowcovered hill that makes an angle of 23.8° with the horizontal. The initial speed of the skier is 7.18 m/s. After coasting 1.96 m up the slope, the skier has a speed of 3.13 m/s. Calculate the work … 
physics
A 65.0kg skier coasts up a snowcovered hill that makes an angle of 27.4° with the horizontal. The initial speed of the skier is 6.37 m/s. After coasting 2.07 m up the slope, the skier has a speed of 4.06 m/s. Calculate the work … 
physics
A 60.0kg skier with an initial speed of 12.0 m/s coasts up a 2.50mhigh rise and angle is 35 degrees.Find her final speed at the top, given that the coefficient of friction between her skis and the snow is 0.0800. (Hint: Find the … 
Physics
A 65.0 kg skier with an initial speed of 11.0 m/s coasts up a 2.50 m high rise as shown in Figure 6.23. Find his final speed at the top, given that the coefficient of friction between her skis and the snow is 0.0800.