Respond to this Question
Similar Questions

Precalculus
I'm studying for my precalc exam and have completed 42 practice problems. I have 3 I need to answer that I can't. Please help. What is the base of the function G(x) = log subscript b x if it's graph has points (16,4)? 
precalc help
Find the exact value without a calc 1. log base 3 of 8 times log base 8 of 9. I started by changing both bases to 10 but don't know what to do from there. 2. e ^ log base e^2^9. I hope that isnt confusing. My teacher said we are suppose … 
Precalc
1. 1/3log base 8 of (x+1)=2log base 8 of 3(2/3)log base 8 of (x+1) 2. 2^x+8 times 2^=x all over 2 = 3 3. if log base a of 3= x and log base a of 2 = y, find each of thefollowing in terms of x and y log base a (18a^3) thanks!! 
Trig
log base b 64  log base b 16 = log base 4 16 solve for the variable.. i got to the part as far as: (log 4/log b) = 2 now i m stuck at how i can isolate the b. plz help! 
math
Use the Laws of logarithms to rewrite the expression log(base 2)(11x(x9)) in a form with no logarithm of a product, quotient or power. After rewriting we will have: log(base 2)A+log(base 2)x+log(base 2)f(x) What is A and what is f(x)? 
Algebra 2
Explain the difference between log base b (mn) and ( log base b of m)(log base b of n). Are they equivalent? 
Precalc
solve the equation: log base 10 of x  log base 10 of (74x)=2 Please help i have been stuck on this for awhile! 
Advanced Functions/ Precalculus Log
1. Evaluate 4^(log base4 64) + 10^(log100) 2. Write 1+log(base2)x^3 as a single logarithm 3. Write log(base b)√(x^3 y z^6) 4. Solve log(base 2)xlog(base 2)6=log(base 2)5+2log(base 2)3 5. Solve 3^(2x) = 9(81^x) 6. Solve 3^(2x)=7^(3x1). … 
precalc
Solve: round to the thousandths if necessary! 1) 4^3/4x+5 = 12 2) log(x1) + log x = log 6 3) 2log(base 4) 5  log(base 4) x + log(base 4) 3  log(base 4) 7 = 1/2 
precalc
Suppose that u=log(2) and v=log(5). Find possible formulas for the following expressions in terms of u and/or v. Your answers should NOT involve any log's. a) log(0.4)= b) log(0.08)= c) log(2500)=