# Physics

posted by .

Block A of mass 4.0 kg is on a horizontal, frictionless tabletop and is placed against a spring of negligible mass
and spring constant 650 N m. The other end of the spring is attached to a wall. The block is pushed toward the
wall until the spring has been compressed a distance x, as shown above. The block is released and follows the
trajectory shown, falling 0.80 m vertically and striking a target on the floor that is a horizontal distance of 1.2 m
from the edge of the table. Air resistance is negligible.

(a) Calculate the time elapsed from the instant block A leaves the table to the instant it strikes the floor.

(b) Calculate the speed of the block as it leaves the table.

(c) Calculate the distance x the spring was compressed.

Block B, also of mass 4.0 kg, is now placed at the edge of the table. The spring is again compressed a distance x,
and block A is released. As it nears the end of the table, it instantaneously collides with and sticks to block B.
The blocks follow the trajectory shown in the figure below and strike the floor at a horizontal distance d from the
edge of the table.

(d) Calculate d if x is equal to the value determined in part (c).

(e) Consider the system consisting of the spring, the blocks, and the table. How does the total mechanical energy
E2 of the system just before the blocks leave the table compare to the total mechanical energy E1 of the
system just before block A is released?
____ E2 < E1 ____ E2 = E1 ____ E2 > E1

## Similar Questions

1. ### Physics

An ideal spring with a stiffness of 329 N/m is attached to a wall, and its other end is attached to a block that has a mass of 15.0 kg. The spring/block system is then stretched away from the spring's relaxed position until 57.0 J …
2. ### Physics

Block A of mass 4.0 kg is on a horizontal, frictionless tabletop and is placed against a spring of negligible mass and spring constant 650 N m. The other end of the spring is attached to a wall. The block is pushed toward the wall …
3. ### physics

A block of ice of mass 4.10 kg is placed against a horizontal spring that has force constant k = 210 N/m and is compressed a distance 2.60×10−2 m. The spring is released and accelerates the block along a horizontal surface. …
4. ### Physics Spring

A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 1.0 J of work is required to compress the spring by 0.12 m. If the mass is released from rest with the spring …
5. ### physics

block a of mass 4kg is on a horizontal, frictionless tabletop and is placed against a spring of negligible mass and spring constant 650n/m. the other end of the spring is attacked to a wall. the block is pushed toward the wall until …
6. ### Physics

A 2.50 mass is pushed against a horizontal spring of force constant 26.0 on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring has been compressed …
7. ### Physics

Need help on part B! A 2.50 mass is pushed against a horizontal spring of force constant 26.0 on a frictionless air table. The spring is attached to the tabletop, and the mass is not attached to the spring in any way. When the spring …
8. ### Physics

A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 5.5 J of work is required to compressed the spring by 0.16 m. If the mass is released from rest with the spring …