Calculus

posted by .

Find the area between y=cosx and y=sinx from 0 to 2pi.

To find the zeros, I combined the equations cosx-sinx=0

What's next?

  • Calculus -

    Watch out.
    Between 0 and 45 degrees, the cos is bigger than the sin.
    Between 45 and 90, the sin is bigger than the cos.
    In both sectors, there is area between them. The same in fact.
    Therefore for quadrant 1, do 0 to pi/4 and double the result.
    Then look at the other three quadrants.

  • Calculus -

    integral cos x dx from 0 to pi/4 = sin pi/4 - sin 0
    = sqrt(2)/2
    integral sin x dx from 0 to pi/4 = -cos pi/4 + 0 = -sqrt(2) /2
    difference = sqrt 2
    then integral from 0 to pi/2 = 2 sqrt 2
    etc

  • Calculus -

    Oh, forgot you do not know where sin = cos

    sure cos x - sin x = 0
    1 -tan x = 0
    tan x = 1
    x = pi/4 (x = y at 45 deg)

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    Verify the identity . (cscX-cotX)^2=1-cosX/1+cosX _______ sorry i cant help you (cscX-cotX)=1/sinX - cosX/sinX = (1-cosX)/sinX If you square this you have (1-cosX)^2/(sinX)^2 Now use (sinX)^2 = 1 - (cosX)^2 to get (1-cosX)^2 / 1 - …
  2. Pre-Calc

    Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
  3. Trigonometry.

    ( tanx/1-cotx )+ (cotx/1-tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side …
  4. Trig........

    I need to prove that the following is true. Thanks (cosx / 1-sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1-sinx) multiply top and …
  5. Math - Pre- Clac

    Prove that each of these equations is an identity. A) (1 + sinx + cos x)/(1 + sinx + cosx)=(1 + cosx)/sinx B) (1 + sinx + cosx)/(1 - sinx + cosx)= (1 + sin x)/cosx Please and thankyou!
  6. maths - trigonometry

    I've asked about this same question before, and someone gave me the way to finish, which I understand to some extent. I need help figuring out what they did in the second step though. How they got to the third step from the second. …
  7. Trigonometry Check

    Simplify #3: [cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] = [cosx-((1)cosx-(0)sinx)sinx]/[cosx-((-1)cosx+(0)sinx)tanx] = [cosx-cosxsinx]/[cosx+cosxtanx] = [cosx(1-sinx]/[cosx(1+tanx] …
  8. trigonometry

    can i use factoring to simplify this trig identity?
  9. Precalculus/Trig

    I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1 - cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1-cosx Simplified: cosx + sin^3x/sin^3x = cscx/1-cosx I don't know …
  10. Calculus

    If y=3/(sinx+cosx) , find dy/dx A. 3sinx-3cosx B. 3/(sinx+cosx)^2 C. -3/(sinx+cosx)^2 D. 3(cosx-sinx)/(sinx+cosx)^2 E. 3(sinx-cosx)/(1+2sinxcosx)

More Similar Questions