geometry
posted by Sarah
11. Infinitely many different sectors can be cut from a circular piece of paper with a 12cm radius, and any such sector can be fashioned into a paper cone with a 12cm slant height.
(a) Show that the volume of the cone produced by the 180degree sector is larger than the volume of the cone produced by the 120degree sector.
(b) Find a sector of the same circle that will produce a cone whose volume is even larger.
(c) Express the volume of a cone formed from this circle as a function of the central angle of the sector used to form it, then find the sector that produces the cone of greatest volume.

Reiny
This is a question that needs to be visualized.
(I used to go to our teacher's staff room and bring back a cone paper cup from the water cooler and cut it open)
One has to realize that the arclength of the sector becomes the circumference of the circle of the cone, and the original radius of the sector becomes the slant height of the cone.
so for a 180° sector arclength = (1/2)(2π)12 = 12π cm
so the circumference of the base circle of the cone = 12π
2πr = 12π and the radius of the cone base is 6
then the height h is ...
h^2 + 6^2 = 12^2
h = √108 = appr. 10.3923
Volume of cone = (1/3)πr^2h = (1/3)π(36)√108 = 391.78
b)
since 120° is 1/3 of the rotation, the arclength would be (1/3) of 2π(12) or 8π
find the radius of the base circle as above, then the height, and finally the volume. 
sarah
thanks
Respond to this Question
Similar Questions

math
Dana takes a sheet of paper, cuts a 120degree circular sector from it, then rolls it up and tapes the straight edges together to form a cone. Given that the sector radius is 12 cm, find the height and volume of this paper cone. 
Geometry
Infinitely many different sectors can be cut from a circular piece of paper with a 12cm radius, and any such sector can be fashioned into a paper cone with a 12cm slant height. (a) Show that the volume of the cone produced by the … 
PreCalculus
Cone Problem Beginning with a circular piece of paper with a 4 inch radius, as shown in (a), cut out a sector with an arc of length x. Join the two radial edges of the remaining portion of the paper to form a cone with radius r and … 
Math
Cone Problem Beginning with a circular piece of paper with a 4 inch radius, as shown in (a), cut out a sector with an arc of length x. Join the two radial edges of the remaining portion of the paper to form a cone with radius r and … 
Math
I already posted this, but wanted to say that I have the answers and it is 1.68 is less than or equal to x is less than or equal to 9.10 Cone Problem Beginning with a circular piece of paper with a 4 inch radius, as shown in (a), … 
geometry
A cone is created from a paper circle with a 90° sector cut from it. The paper along the remaining circumference of the circle is the base of the cone. Find the radius of the base of the cone. Round to the nearest hundredth. 
CALCULUS
A cone shaped paper drinking cup is to be made from a circular piece of paper of radius 3 inches by cutting out a sector of the circle and gluing the straight edges together. Find the angle of the cut that gives the cup with the largest … 
calculus
A paper cone is to be formed by starting with a disk of radius 9cm, cutting out a circular sector, and gluing the new edges together. The size of the circular sector is chosen to maximize the volume of the resulting cone. How tall … 
Geometry
A piece of paper in the form of a sector of a circle of radius 15 cm is rolled into a cone. Calculate the volume of the cone if the angle of the sector is 240 degrees. 
Math
A paper cone has a base diameter of 8cm and a height of 3cm(a) use Pythagoras theorem to calculate it's slant height (b)if the cone is cut and opened out into the sector of a circle what is the angel of the sector