Pre Calculus
posted by Tyler .
Establish the following identity
sin 2x/sinx  cos2x/cosx = secx

Use sin 2x = 2sinxcosx and
cos 2x = 2cos^2x  1
in the left side, it comes apart nicely
Respond to this Question
Similar Questions

PreCalc
Trigonometric Identities Prove: (tanx + secx 1)/(tanx  secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x  1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1  cosx)/cosx)/((sinx … 
PreCalculus
How can this identity be proved/verified? 
PreCalculus
How do you verify: 1.) sinxcosx+sinx^3secx=tanx 2.) (secx+tanx)/(secxtan)=(secx+tanx)^2 I tried starting from the left on both problems, but am stuck. like I said before, change everything into sines and cosines. for the first one: … 
drwls
My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to … 
Math  Pre Clac
Prove that each of these equations is an identity. A) (1 + sinx + cos x)/(1 + sinx + cosx)=(1 + cosx)/sinx B) (1 + sinx + cosx)/(1  sinx + cosx)= (1 + sin x)/cosx Please and thankyou! 
Pre Calculus
Establish the identity (cosx/2sinx/2)^2=1sin x 
Pre Calculus
Having trouble verifying this identity... cscxtanx + secx= 2cosx This is what I've been trying (1/sinx)(sinx/cosx) + secx = 2cosx (1/cosx)+(1/cosx) = 2 cosx 2 secx = 2cosx that's what i ended up with, but i know it's now right. did … 
Trigonometry
Prove the following trigonometric identities. please give a detailed answer because I don't understand this at all. a. sin(x)tan(x)=cos(x)/cot^2 (x) b. (1+tanx)^2=sec^2 (x)+2tan(x) c. 1/sin(x) + 1/cos(x) = (cosx+sinx)(secx)(cscx) d. … 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know … 
Calculus 2 Trigonometric Substitution
I'm working this problem: ∫ [1tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)[(sin^2x/cos^2x)/(1/cosx) ∫cosxsinx(sinx/cosx) ∫cosx∫sin^2(x)/cosx sinx∫(1cos^2(x))/cosx sinx∫(1/cosx)cosx sinx∫secx∫cosx …