Pre Calculus

posted by .

Establish the identity

(cosx/2-sinx/2)^2=1-sin x

  • Pre Calculus -

    Hint:
    sin 2A = 2sinAcosA

    treat x/2 as A

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Trigonometry.

    ( tanx/1-cotx )+ (cotx/1-tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side …
  2. Trig........

    I need to prove that the following is true. Thanks (cosx / 1-sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1-sinx) multiply top and …
  3. Pre-Calc

    Establish the identity. sinx + cosx/sinx - cosx = 1+2sinxcosx/2sin^2x-1
  4. Math - Pre- Clac

    Prove that each of these equations is an identity. A) (1 + sinx + cos x)/(1 + sinx + cosx)=(1 + cosx)/sinx B) (1 + sinx + cosx)/(1 - sinx + cosx)= (1 + sin x)/cosx Please and thankyou!
  5. Pre Calculus

    Establish the following identity sin 2x/sinx - cos2x/cosx = secx
  6. Trigonometry Check

    Simplify #3: [cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] = [cosx-((1)cosx-(0)sinx)sinx]/[cosx-((-1)cosx+(0)sinx)tanx] = [cosx-cosxsinx]/[cosx+cosxtanx] = [cosx(1-sinx]/[cosx(1+tanx] …
  7. Pre-Calculus

    How would you prove/Verify this Identity. x=theta (cosx+sinx-sin^3x)/(sinx)=cotx+cos^2x
  8. Pre-Calc : Verify the Identity

    Verify the Identity: sin(x+π)/cos(x+3π/2) =tan^2x-sec^2x I've done: sinxcosπ+cosxsinπ / cosxcos(3π/2) - sinxsin(3π/2) sinx(-1) + cosx(0) / cosx(0)- sinx(-1) -sinx/sinx What do I do from here?
  9. Precalculus/Trig

    I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1 - cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1-cosx Simplified: cosx + sin^3x/sin^3x = cscx/1-cosx I don't know …
  10. Calculus 2 Trigonometric Substitution

    I'm working this problem: ∫ [1-tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)-[(sin^2x/cos^2x)/(1/cosx) ∫cosx-sinx(sinx/cosx) ∫cosx-∫sin^2(x)/cosx sinx-∫(1-cos^2(x))/cosx sinx-∫(1/cosx)-cosx sinx-∫secx-∫cosx …

More Similar Questions