Prove the trig identity

cos(4x)=2-sec^2(2x)/sec^2(2x)

To prove the trigonometric identity cos(4x) = 2 - sec^2(2x)/sec^2(2x), we can start with the right-hand side (RHS) of the equation and manipulate it until it matches the left-hand side (LHS).

1. Begin with the RHS: 2 - sec^2(2x)/sec^2(2x)

2. Rewrite the RHS in terms of cosine and secant: 2 - 1/cos^2(2x) * 1/cos^2(2x)

3. Combine the fractions: 2 - 1/cos^2(2x * cos^2(2x)

4. Simplify the expression inside the parentheses: 2 - 1/cos^4(2x)

5. Use the Pythagorean identity sec^2(theta) = 1 + tan^2(theta): cos^2(2x) = 1 + tan^2(2x)

6. Substitute the expression from step 5 into the equation: 2 - 1/(1 + tan^2(2x))^2

7. Expand the denominator: 2 - 1/(1 + 2tan^2(2x) + tan^4(2x))

8. Simplify: 2 - 1/(1 + 2tan^2(2x) + tan^4(2x))

9. Use the Pythagorean identity tan^2(theta) = sec^2(theta) - 1: 2 - 1/(1 + 2(sec^2(2x) - 1) + (sec^2(2x) - 1)^2)

10. Expand the expression: 2 - 1/(1 + 2sec^2(2x) - 2 + sec^4(2x) - 2sec^2(2x) + 1)

11. Simplify and combine like terms: 2 - 1/(sec^4(2x) + sec^2(2x))

12. Apply the Pythagorean identity for the secant function: 2 - 1/(sec^2(2x)(sec^2(2x) + 1))

13. The denominator sec^2(2x)(sec^2(2x) + 1) can be simplified to sec^2(2x) + sec^2(2x) = 2sec^2(2x).

14. Substitute the simplified denominator into the equation: 2 - 1/(2sec^2(2x))

15. The resulting expression is equivalent to 2 - sec^2(2x)/sec^2(2x), which matches the LHS.

Therefore, the trigonometric identity cos(4x) = 2 - sec^2(2x)/sec^2(2x) has been proven.