posted by .

prove 2csc(2x)= csc(x)^2tanx

  • Trig. -

    L.H. Side:
    2 csc(2x) = 2/sin(2x)
    = 1/(sinx cosx)

    R.H. side:
    csc(x)^2 tan x = (1/sin^2x)(sinx/cosx)
    = 1/(sinx cosx)


Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math (trig)

    Prove: sin^2(x/2) = csc^2x - cot^2x / 2csc^2(x) + 2csc(x)cot(x) On the right, factor the numberator as a difference of two perfect squares. In the denominator, factor out 2cscx. You ought to prodeed rather quickly to the proof.
  2. trig

    Prove the identity sin squared 0 with line/2 = csc zero with line -cot zero with a line /2csc zero with a line
  3. precalculus^2x-1/csc^2x=cos^2x 2.1/1-cosx+1/1+cosx=2csc^2x 3.sinxcosy+cosxsiny/cosxcosy-sinxsiny=tanx+tany/1-tanxtany
  4. trig

    prove: cos*2x=csc*2x-2/csc*2x
  5. trig 30

    For csc^2 A-1/cot A csc A, what is the simplest equivalent trig expression?
  6. trig

    prove the identity: csc x-1/csc x+1 = cot^x/csc^x+2 csc x+1
  7. trig

    verify : [sec(x) / csc(x) - cot(x)] - [sec(x) / csc(x) + cot(x)] = 2csc(x)
  8. Prove trig identity

    Prove the following trigonometric identity: (sec^2x-1)(csc^2x-1)=1
  9. trig

    For each expression in column I, choose the expression from column II to complete an identity: Column I Column II 1. -tanxcosx A. sin^2x/cos^2x 2. sec^2x-1 B. 1/sec^2x 3. sec x/cscx C. sin(-x) 4. 1+sin^2x^2x-cot^2x+sin^2x 5. …
  10. Math

    Find an equation for the tangent line to the curve at (π/2 , 2). y = 4 + cot(x) - 2csc(x) I am confused how to take the derivative of this problem. When I tried to solve it I ended up with -csc^2 (x) + (2csc(x) * cot(x)). From …

More Similar Questions