# physics

posted by .

Block A has a mass of 4.1 kg, and it is on a frictionless surface. A string tied to this mass passes over a frictionless pulley, and is attached to a hanging block (Block B), as shown in the image below. The blocks then accelerate at 2.3 m/s/s.
What is the mass of Block B?

• physics -

a = g*Mb/(Mb + Ma)

See if you can derive that equation

Solve for Mb

• physics -

do you mean 2.3=9.8*Mb/(Mb+4.1) ?

• physics -

got it thanks

## Similar Questions

1. ### physics

The system shown below consists of a block of mass M = 4.4 kg resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging block …
2. ### physics

The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
3. ### physics

The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
4. ### physics

The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
5. ### physics

The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
6. ### physics

The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
7. ### physics

The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
8. ### physics

The system shown in the figure below consists of a mass M = 3.5-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
9. ### Physics

Block A (Mass = 3.500 kg) and Block B (Mass = 2.450 kg) are attached by a massless string Block A sits on a horizontal tabletop. There is friction between the surface and Block A. The string passes overa frictionless, massless pulley. …
10. ### Physics

There is a block of mass 1 on a frictionless surface attached to a string. The string goes over a frictionless pulley. The pulley is a hoop with a rotational inertia of I=MR^2. The other end of the string is attached to a hanging block …

More Similar Questions