Calculus

posted by .

R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1.

(a) Set up and evaluate an integral that gives the area of R.

(b) A solid has base R and the cross-sections of the solid perpendicular to the y-axis are squares. Find the volume of the solid.

(c) A solid has base R and the cross-sections of the solid perpendicular to the y-axis are equilateral triangles. Find the volume of the solid.

  • Calculus -

    it is symmetric around the y axis so do the integral from x = 0 to x = 1 and double it
    2 int from 0 to 1 of x^2 dx
    2 (x^3)/3 = 2/3

    length of side of square = 2x^2
    area of cross section = 4 x^4
    integrate 4 x^4 dx from 0 to 1

    now do the same for area of cross section = x^4 sqrt 3

  • whoops -

    I did the area below the line. For between use (1-x^2) dx etc

  • Calculus -

    What is symmetric around the y-axis? This is confusing because I don't really know how to draw the solid. First it says the solid has the base of R. So does that mean R should be on the x-axis? But how do you find out the length of the side of the square? Is one side of the square solid bounded by the region so that one of the sides of the square faces of the solid supposed to have a length that is from one intersection point of both curves to the other intersection point? Same goes for part c. Thanks

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus

    let R be the region bounded by the graphs of y = sin(pie times x) and y = x^3 - 4. a) find the area of R b) the horizontal line y = -2 splits the region R into parts. write but do not evaluate an integral expression for the area of …
  2. math

    let R be the region bounded by the graphs of y = sin(pie times x) and y = x^3 - 4. a) find the area of R b) the horizontal line y = -2 splits the region R into parts. write but do not evaluate an integral expression for the area of …
  3. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  4. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  5. calculus

    1. Find the area of the region bounded by f(x)=x^2 +6x+9 and g(x)=5(x+3). Show the integral used, the limits of integration and how to evaluate the integral. 2. Find the area of the region bounded by x=y^2+6, x=0 , y=-6, and y=7. Show …
  6. Calculus

    The functions f and g are given by f(x)=√x and g(x)=6-x. Let R be the region bounded by the x-axis and the graphs of f and g, as shown in the figure in the link below. Please show your work. h t t p://goo.gl/jXIZD 1. Find the …
  7. Calculus AP

    Let R be the region in the first quadrant bounded by the graph y=3-√x the horizontal line y=1, and the y-axis as shown in the figure to the right. Please show all work. 1. Find the area of R 2. Write but do not evaluate, an integral …
  8. Calculus check

    The functions f and g are given by f(x)=sqrt(x^3) and g(x)=16-2x. Let R be the region bounded by the x-axis and the graphs of f and g. A. Find the area of R. B. The region R from x=0 to x=4 is rotated about the line x=4. Write, but …
  9. calculus review please help!

    1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate, the …
  10. Calculus

    Set up, but do not evaluate, the integral which gives the volume when the region bounded by the curves y = Ln(x), y = 2, and x = 1 is revolved around the line y = −2.

More Similar Questions