# Alg II

posted by .

I'm working with finding roots of polynomial equations with degrees of 3 or higher. I have the equation

r(x)=x^4-6x^3+12x^2=6x-13

I used a graphing calculator to find the real roots of 1,-1

Then I did synthetic using -1, and I ended up with the equation

x^3-6x^2+2x-13

How do I get this to a quadratic so that I can find the imaginary roots? A friend suggested grouping, but I'm not real good at grouping, and I couldn't figure out how to factor it or group it. Any help would be appreciated.

Thanks,
Josh

## Similar Questions

1. ### factoring

can this equation be factored further? y= x^4+2x^3+4x^2+8x+16 Not in the real number system. If you plot the function, you will see the minimum is at x=-1.1 (approx) and y is positive. At no x does the function equal zero, so there
2. ### Algebra II

Which describes the number and type of roots of the equation x^2 -625=0?
3. ### math

I HAVE THESE ANSWERS FOR THE PROBLEMS. COULD YOU DOUBLE CHECK PLEASE, THIS IS A PRACTICE QUIZ WHICH ISN'T A GRADE IT JUST HELPS ME GET READY FOR THE TEST. 1) a 2) b 3) d 4) a 5) d 1. Solve x^3 + 6x^2 + 13x + 10 = 0. a) –2 + 2i, –2 …
4. ### Precalculus

"Show that x^6 - 7x^3 - 8 = 0 has a quadratic form. Then find the two real roots and the four imaginary roots of this equation." I used synthetic division to get the real roots 2 and -1, but I can't figure out how to get the imaginary …
5. ### Alg II

I'm working with finding roots of polynomial equations with degrees of 3 or higher. I have the equation r(x)=x^4-6x^3+12x^2=6x-13 I used a graphing calculator to find the real roots of 1,-1 Then I did synthetic using -1, and I ended …
6. ### Algebra 2

How do I solve polynomial equation by finding all complex roots?
7. ### Cubic Equations

I have three that I need help with if possible. 1. Solve 2x^3 - 3x^2 = 6x - 9 2. Find all real and imaginary roots of the polynomial equation 3x^4 - x^3 + 4x^2 - 2x - 4=0 3. Find a cubic equation with integral coefficients and roots …
8. ### mathematics

Use the discriminant to determine the number of real roots the equation has. 3x2 – 5x + 1 =0 A. One real root (a double root) B. Two distinct real roots C. Three real roots D. None (two imaginary roots)
9. ### maths2

Use the discriminant to determine the number of real roots the equation has. 7x2 + 3x + 1 =0 A. One real root (a double root) B. Two distinct real roots C. Three real roots D. None (two imaginary roots)
10. ### algebra

if a quadratic equation with real coefficents has a discriminant of 10, then what type of roots does it have?

More Similar Questions