# Physics

posted by .

[b]1. The problem statement, all variables and given/known data[/b]

A 90 N sign hangs on the end of a 55 N beam supported by a wire as shown. The beam is attached to the wall by a hinge. What are the horizontal and vertical componetns of the force on the hinge?

Notes:
the sign is 1.7 m from the wall
the CG of the beam is located .75 m from the wall and .95 m from the sign
at the CG of the beam the wire is attached with the other end attached to the wall
the angle that the beam makes with the wire is 50 degrees

[b]2. Relevant equations[/b]

in order to achieve static equilibrium

SIGMA torque = 0
SIGMA F_y = 0
SIGMA F_x = 0

[b]3. The attempt at a solution[/b]

subscripts
F_g is the force of gravity
F_h is the force of the hinge
F_T is the force of tension
_x was added on to forces to indicate a x component
_y was added on to forces to indicate a y component
_beam was added on to forces to indicate that a force exerted on the beam
_sign was added on to forces to indicated that a force exerted on the sign

SIGMA F_y = F_h_y + F_T_y - F_g_sign - F_g_beam = 0
SIGMA F_y = F_h_y + F_T sin THETA - F_g_sign - F_g_beam = 0

SIGMA F_x = F_h_x - F_T_x = 0
SIGMA F_x = F_h_x - F_T cos THETA= 0

PP at hinge
SIGMA torque = F_T_y * r_3 - F_g_beam * r_2 - F_g_sign * r_1 = 0
SIGMA torque = F_T sin THETA * r_3 - F_g_beam * r_2 - F_g_sign * r_1 = 0

add F_g_sign * r_1 to both sides
SIGMA torque = F_T sin THETA * r_3 - F_g_beam * r_2 = F_g_sign * r_1

add F_g_beam * r_2 to both sides
SIGMA torque = F_T sin THETA * r_3 = F_g_sign * r_1 + F_g_beam * r_2

divide both sides by sin THETA * r_3
SIGMA torque = F_T = ( F_g_sign * r_1 + F_g_beam * r_2 ) / sin THETA * r_3

plug and chug
SIGMA torque = F_T = ( 90 N(.95 m + .75 m) + 55 N * .75 m ) / (.75 m) sin 50
= 198.4 N

we know this
SIGMA F_x = F_h_x - F_T cos THETA= 0

add F_T cos THETA to both sides
SIGMA F_x = F_h_x = F_T cos THETA

plug chug
SIGMA F_x = F_h_x
= 198.4 N cos 50
= 130 N
rounded to two sig figs

we know this
SIGMA F_y = F_h_y + F_T sin THETA - F_g_sign - F_g_beam = 0

SIGMA F_y = F_h_y + F_T sin THETA - F_g_beam = F_g_sign

SIGMA F_y = F_h_y + F_T sin THETA = F_g_sign + F_g_beam

subtract F_T sin THETA from both sides
SIGMA F_y = F_h_y = F_g_sign + F_g_beam - F_T sin THETA

plug chug
SIGMA F_y = F_h_y = 90 N + 55 N - 198.4 N sin 50
= - 7.0 N

What gives? I should all of my steps... ALL of them... So could you please show me were I went wrong?

• Physics -

call the wire tension T
Calculate Ty, vertical component of tension.
55(.75) + 90(1.70) - .75 Ty = 0
(by the way cos40 =sin50 so we agree on equation )
so
Ty = 259 N

Sum vertical forces on hinge
F DOWN on hinge (is up on beam) - 55 -90 + 259 = 0
so F down on hinge = -114
so 114 N UP on hinge

The only horizontal force on the beam is
T cos 50
since T sin 50 = 259
T = 259/sin 50
and we want Tcos 50, thoe horizontal component
T cos 50 = 259 cos 50/sin 50
= 259/tan 50 = 217N toward the wall on the hinge

## Similar Questions

1. ### phys

A 1155-N uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. A W = 1915-N crate hangs from the far end of the beam. (a) Using the data shown in the drawing, find the magnitude of the …
2. ### physics

A 1200-N uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. A W = 1825-N crate hangs from the far end of the beam. (a) Using the data shown in the drawing, find the magnitude of the …
3. ### physics

A 1290-N uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. A W = 1920-N crate hangs from the far end of the beam. the angle going from the top of the beam o the brick wall is at 50.0 …
4. ### Physics! plese help

A 1320-N uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. A 1960-N crate hangs from the far end of the beam. Using the data shown in the figure, find (a) the magnitude of the tension …
5. ### Physics

A purple beam is hinged to a wall to hold up a blue sign. The beam has a mass of mb = 6.1 kg and the sign has a mass of ms = 16.4 kg. The length of the beam is L = 2.83 m. The sign is attached at the very end of the beam, but the horizontal …
6. ### Phyics

A 1390-N uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. A 1960-N crate hangs from the far end of the beam. Using the data shown in the figure, find (a) the magnitude of the tension …
7. ### phyics

A 1390-N uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. A 1960-N crate hangs from the far end of the beam. Using the data shown in the figure, find (a) the magnitude of the tension …
8. ### Physics

A purple beam is hinged to a wall to hold up a blue sign. The beam has a mass of mb = 6.7 kg and the sign has a mass of ms = 17.4 kg. The length of the beam is L = 2.83 m. The sign is attached at the very end of the beam, but the horizontal …
9. ### Physics

A purple beam is hinged to a wall to hold up a blue sign. The beam has a mass of mb = 6.7 kg and the sign has a mass of ms = 17.4 kg. The length of the beam is L = 2.83 m. The sign is attached at the very end of the beam, but the horizontal …
10. ### Physics

A sign weighing 500N is suspended at the end of a uniform 300N beam 5m in length, as shown. The beam is attatched to the wall with a hinge, and its other end is supported by a wire. What is the tension in the wire if it makes an an …

More Similar Questions