# precalculus

posted by .

1.csc^2x-1/csc^2x=cos^2x
2.1/1-cosx+1/1+cosx=2csc^2x
3.sinxcosy+cosxsiny/cosxcosy-sinxsiny=tanx+tany/1-tanxtany

## Similar Questions

1. ### Pre-Calc

Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
2. ### Confused! Pre-Cal

Verify that each equation is an identity.. tan A= sec a/csca I have notes (i wasn't here that day and teacher refuses to reteach) but I don't understand them here is the notes... Problem w/ same directions: Cos x= cotx/csc x = Cosx/Sin …
3. ### math

1. (sinx/cscx)+(cosx/secx)=1 2. (1/sinxcosx)-(cosx/sinx)=tanx 3. (1/1+cos s)=csc^2 s-csc s cot s 4. (secx/secx-tanx)=sec^2x+secxtanx 5. (cosx/secx-1)-(cosx/tan^2x)=cot^2x
4. ### Trig (inverse functions)

Problem: tan[arccsc(-5/3) + arctan(1/4)] My work: let arccsc(-5/3)=X and let arctan(1/4)=Y where -pi/2<=X<=pi/2, X cannot be 0 and where -pi/2<Y<pi/2 so that cscX=-5/3 and tanY=1/4 The problem can now be written as tan(X+Y) …

Show that tanx= (sinx/ cosx) can be written as: tan(x-y) = (tanx - tany) / (1+ tanxtany)

Show that tanx = sinx / cosx can be written as tan(x+y) = (tanx + tany) / (1 - tanxtany)
7. ### Trigonometry Check

Simplify #3: [cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] = [cosx-((1)cosx-(0)sinx)sinx]/[cosx-((-1)cosx+(0)sinx)tanx] = [cosx-cosxsinx]/[cosx+cosxtanx] = [cosx(1-sinx]/[cosx(1+tanx] …
8. ### Trigonometry Help

Simplify: sin(x-y)cosy+cos(x-y)siny = (sinxcosy-cosxsiny)cosy+(cosxcosy+sinxsiny)siny = ?

Which of the following are trigonometric identities?
10. ### calculus help

y=cosxcosy-sinxsiny/sinxcosy+cosxsiny find dy/dx plz show me working

More Similar Questions