chemistry
posted by Jim .
Calulate the wavelengths (in nm) of the visible lines in the line spectrum of hydrogen using the Rydberg equation (nf = 2; ni = 3, 4, 5, and 6).
Respond to this Question
Similar Questions

chem
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. change the line spectrum to meters you know the equation is Et= EfEi (i think … 
Chemistry
I am so stuck on this problem: λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5. I know 1/lambda = RH (1/n2  1/n2) 1/(.4118e6 … 
Chemistry
Calulate the wavelengths (in nm) of the visible lines in the line spectrum of hydrogen using the Rydberg equation (nf = 2; ni = 3, 4, 5, and 6) I'm not sure how to do this; if someone could explain how to work it for one of the ni's, … 
Chem.
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6. 
college chemistry
ë for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 5 I have tried to figure this out so many times, found the same answer, and it's always … 
chemistry
The Rydberg equation, with n1=1, predicts an ultraviolet series of spectral lines of atomic hydrogen. Which of the following wavelengths is not predicted by the equation: 1/ = (1.097 x 10(7) m  1) x (1/n1(2)1/n2(2) 
chemistry
The Rydberg equation, with n1=1, predicts an ultraviolet series of spectral lines of atomic hydrogen. Which of the following wavelengths is not predicted by the equation: 1/ = (1.097 x 10(7) m  1) x (1/n1(2)1/n2(2) a)182 nm b)103 … 
chemistry
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6. 
Rydberg equation
λ for one line of the hydrogen spectrum is .4118 x 104 cm. Use this value in the Rydberg equation to calculate the RH value using n1 = 2, and n2 = 6. 
Chemistry Help! (Rydberg Equation)
a) According to the Rydberg equation, the line with the shortest wavelength in the emission spectrum of atomic hydrogen is predicted to lie at a wavelength (in nm) of _____ b) According to the Rydberg equation, the longest wavelength …