posted by .

Show that tanx = sinx / cosx
can be written as
tan(x+y) = (tanx + tany) / (1 - tanxtany)

rewrite the left side as
sin(x+y)/cos(x+y), then use the addition formulas for both. It will simplify (finally) to the right.

## Similar Questions

1. ### Pre-Calc

Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
2. ### Mathematics - Trigonometric Identities

Prove: sinx + tanx = tanx (1 + cosx) What I have so far: LS: = sinx + tanx = sinx + (sinx / cosx) = (sinx) (cosx) + sinx / cos = tanx (cosx + sinx) I don't know what to do now
3. ### Mathematics - Trigonometric Identities

Prove: (tanx)(sinx) / (tanx) + (sinx) = (tanx) - (sinx) / (tanx)(sinx) What I have so far: L.S. = (sinx / cosx) sinx / (sinx / cosx) + sinx = (sin^2x / cosx) / (sinx + (sinx) (cosx) / cosx) = (sin^2x / cosx) / (cosx / sinx + sinxcosx)
4. ### Trig (inverse functions)

Problem: tan[arccsc(-5/3) + arctan(1/4)] My work: let arccsc(-5/3)=X and let arctan(1/4)=Y where -pi/2<=X<=pi/2, X cannot be 0 and where -pi/2<Y<pi/2 so that cscX=-5/3 and tanY=1/4 The problem can now be written as tan(X+Y) …
5. ### Trigo

Given that a^2+b^2=2 and that (a/b)= tan(45degee+x), find a and b in terms of sinx and cosx. I don't know what i'm supposed to do, and i don't come to an answer! Help, thanks! my workings: tan(45+x)= (1+tanx)/(1-tanx) a/b = (1+tanx)/(1-tanx) …
6. ### Trigonometry

Given that a^2+b^2=2 and that (a/b)= tan(45degee+x), find a and b in terms of sinx and cosx. I don't know what i'm supposed to do, and i don't come to an answer! Help, thanks! my workings: tan(45+x)= (1+tanx)/(1-tanx) a/b = (1+tanx)/(1-tanx) …