# trig

posted by .

I need HELP Verify the identity
Cot3X/CSCX=cosX(csc2X-1)

• trig -

testing if x = 20ยบ
LS = cot60/csc20
= sin20/tan60 = .1975
RS = cos20(1/sin40 - 1)
= .5222

Your equation is NOT an identity.

A check should always be your first step when proving complicated-looking trig "identities".

## Similar Questions

1. ### Math

Verify the identity . (cscX-cotX)^2=1-cosX/1+cosX _______ sorry i cant help you (cscX-cotX)=1/sinX - cosX/sinX = (1-cosX)/sinX If you square this you have (1-cosX)^2/(sinX)^2 Now use (sinX)^2 = 1 - (cosX)^2 to get (1-cosX)^2 / 1 - …
2. ### trig

express this in sinx (1/ cscx + cotx )+ (1/cscx- cotx) i got 2sinx is that right?
3. ### Trig

Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (x=theta BTW)
4. ### drwls

My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to …
5. ### Math

verify that the equation is an identity: (1-cosX)/(1+cosX) = (cscX-cotX)^2
6. ### trig

Prove that the statement is an identity: (tanx/cscx)=(1/cosx)-cosx
7. ### trigonometry

can i use factoring to simplify this trig identity?