trig

posted by .

I need HELP Verify the identity
Cot3X/CSCX=cosX(csc2X-1)

  • trig -

    testing if x = 20ยบ
    LS = cot60/csc20
    = sin20/tan60 = .1975
    RS = cos20(1/sin40 - 1)
    = .5222

    Your equation is NOT an identity.

    A check should always be your first step when proving complicated-looking trig "identities".

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    Verify the identity . (cscX-cotX)^2=1-cosX/1+cosX _______ sorry i cant help you (cscX-cotX)=1/sinX - cosX/sinX = (1-cosX)/sinX If you square this you have (1-cosX)^2/(sinX)^2 Now use (sinX)^2 = 1 - (cosX)^2 to get (1-cosX)^2 / 1 - …
  2. trig

    express this in sinx (1/ cscx + cotx )+ (1/cscx- cotx) i got 2sinx is that right?
  3. Trig

    Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (x=theta BTW)
  4. drwls

    My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to …
  5. Math

    verify that the equation is an identity: (1-cosX)/(1+cosX) = (cscX-cotX)^2
  6. trig

    Prove that the statement is an identity: (tanx/cscx)=(1/cosx)-cosx
  7. trigonometry

    can i use factoring to simplify this trig identity?
  8. Math please help quick

    Which of the following are identities? Check all that apply. (Points : 2) sin2x = 1 - cos2x sin2x - cos2x = 1 tan2x = 1 + sec2x cot2x = csc2x - 1 Question 4. 4. Which of the following equations are identities?
  9. Precalculus/Trig

    I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1 - cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1-cosx Simplified: cosx + sin^3x/sin^3x = cscx/1-cosx I don't know …
  10. Identities

    Verify the following identity cos2x/sin2x+sinx/cosx=csc2x

More Similar Questions