Math
posted by Salman .
A conical water tank with vertex down has a radius of 10 feet at the top and is 29 feet high. If water flows into the tank at a rate of 10 , how fast is the depth of the water increasing when the water is 17 feet deep?

I will be happy to critique your work.
relate volume to height
then
dv/dt= f'(h,t)
solve for dh/dt
Respond to this Question
Similar Questions

calculusrate problem
A conical tank (with vertex down) is 10 feet acros the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep. 
calculus
A conical tank( with vertex down) is 10 feet across the top and 18 feet deep. As the water flows into the tank, the change is the radius of the water at a rate of 2 feet per minute, find the rate of change of the volume of the water … 
calculus
A 24ft high conical water tank has its vertex on the ground and radius of the base is 10 ft. If water flows into the tank at a rate of 20 ft3/min, how fast is the depth of water increasing when the depth of the water is 20 ft? 
calculus
A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet … 
math  calc
A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
math  calc
A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
Math
A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14 feet … 
Math
A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14 feet … 
Calculus (math)
A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
math
A conical water tank with vertex down has a radius of 13 feet at the top and is 28 feet high. If water flows into the tank at a rate of 10 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet …