Statistics
posted by jig .
Can "effect size" be determined without also knowing the population standard deviation?

What type of statistics are you using, parametric or nonparametric? The former requires a measure of variation like the standard deviation.
Respond to this Question
Similar Questions

statistics
sigma is the standard deviation of a population of size N S is the standard deviation of a sample of size n from within the population. What is the estimated value of S^2? 
statistics
what are the mean and standard deviation of a sampling distribution consisting of samples of size 16? 
Statistics
A researcher conducts a t test for dependent means in which it is predicted that there will be a decrease in unemployment from before to after a particular jobskills training program. The cutoff "t" needed is 1.8333. The standard … 
Statistics
A researcher conducts a t test for dependent means in which it is predicted that there will be a decrease in unemployment from before to after a particular jobskills training program. The cutoff "t" needed is 1.8333. The standard … 
math
A researcher conducts a t test for dependent means in which it is predicted that there will be a decrease in unemployment from before to after a particular jobskills training program. The cutoff "t" needed is 1.8333. The standard … 
statistics
How do we compute sample size fluctuations? 
sample size/ standard deviations
How do we compute sample size fluctuations? 
Statistics (42)
A simple random sample of 60 items resulted in a sample mean of 96. The population standard deviation is 16. a. Compute the 95% confidence interval for the population mean (to 1 decimal). ( , ) b. Assume that the same sample mean was … 
Statistics
Find the margin of error for a 95% confidence interval for estimating the population mean when the sample standard deviation equals 100, with a sample size of (i) 400, (ii) 1600. What is the effect of the sample size? 
Statistics
Find the margin of error for a 95% confidence interval for estimating the population mean when the sample standard deviation equals 100, with a sample size of (i) 400, (ii) 1600. What is the effect of the sample size?