# pre-calculus

posted by .

triangle KLM has vertices K(0,0), L(18,0), and M(6,12).
a. Write equations for the altitudes to the three sides of the triangle.

b. Show that the altitudes intersect at a single point O, called the orthocenter of the triangle.

• pre-calculus -

Given:
K(0,0), L(18,0), M(6,12)
To find:
Equations of sides of triangle KLM.
Equations of altitudes of the triangle, namely KK1, LL1, MM1, where K1, L1 and M1 are the intersection of the altitudes of the points K,L,M and the opposite side.
Prove that the three altitudes meet at a single point at the orthocentre.

Equation of a line passing through one point A and perpendicular to a line passing through points B and C is:
(y-ya)(xc-xb)+(x-xa)(yc-yb)=0
Substituting in turn points K, L and M for A,B and C, the equations of the altitudes are:
KK1 : y=x
LL1 : y=9-x/2
MM1 : x=6
The line MM1 is a line parallel to the y-Axis.
Substitute x=6 into the other equations, we get, for the intersection point:
with LL1: y=9-6/2=6, thus (6,6)
with KK1: y=x, thus (6,6)
Therefore the orthocentre is at (6,6).

## Similar Questions

1. ### math

the verticies of triangle R(0,12), S(-6,6), and T(4,8). write in slope-intercept form the equations of the lines that contain the segments described. it says, find the medians of triangle RST. find the altitudes of triangle RST. find …
2. ### Geometry

Given tri ABC where A(4,-6) B, (-8,2) C (-4,8) A. Write the equation of the altitudes of triangle AC b. Determine the point of concurrency of the altitudes c. What is this point of concurrency called?

Where is the circumcenter of any given triangle?
4. ### Geometry

Find the area of each equilateral triangle. The triangle has 12cm sides. The triangle has 10in altitudes.
5. ### Geometry

Altitudes $\overline{XD}$ and $\overline{YE}$ of acute triangle $\triangle XYZ$ intersect at point $H$. If the altitudes intersect at a $123^\circ$ angle, and $\angle YXH = 26^\circ$, then what is $\angle HZX$ in degrees?
6. ### Geometry

Altitudes $\overline{XD}$ and $\overline{YE}$ of acute triangle $\triangle XYZ$ intersect at point $H$. If the altitudes intersect at a $123^\circ$ angle, and $\angle YXH = 26^\circ$, then what is $\angle HZX$ in degrees?
7. ### Geometry

Altitudes $\overline{XD}$ and $\overline{YE}$ of acute triangle $\triangle XYZ$ intersect at point $H$. If the altitudes intersect at a $123^\circ$ angle, and $\angle YXH = 26^\circ$, then what is $\angle HZX$ in degrees?
8. ### Geometry

Altitudes $\overline{XD}$ and $\overline{YE}$ of acute triangle $\triangle XYZ$ intersect at point $H$. If the altitudes intersect at a $123^\circ$ angle, and $\angle YXH = 26^\circ$, then what is $\angle HZX$ in degrees?
Altitudes $\overline{XD}$ and $\overline{YE}$ of acute triangle $\triangle XYZ$ intersect at point $H$. If the altitudes intersect at a $123^\circ$ angle, and $\angle YXH = 26^\circ$, then what is $\angle HZX$ in degrees?
Altitudes $\overline{XD}$ and $\overline{YE}$ of acute triangle $\triangle XYZ$ intersect at point $H$. If the altitudes intersect at a $123^\circ$ angle, and $\angle YXH = 26^\circ$, then what is $\angle HZX$ in degrees?