calculus
posted by gnozahs .
Determine the infinite limit of the following function.
Lim as x>zero
1/x^2(x+7)
and lim as x>3 from the left side
2/x3
Respond to this Question
Similar Questions

calc
need to find: lim as x > 0 of 4(e^2x  1) / (e^x 1) Try splitting the limit for the numerator and denominator lim lim x>0 4(e^2x1) (4)x>0 (e^2x1) ______________ = ________________ lim lim x>0 e^X1 x>0 e^x1 … 
Calculus
Let f be defined by f(x)= 4x^32m, x is less than or equal to 1 , 7x^2+5m , x is greater than 1. Piece wise function. a. Find lim>1 from the right side(in term of m) B. Find lim>1 from the left side (in term of m). I … 
CALCULUS  need help!
Determine the limit of the trigonometric function (if it exists). 1. lim sin x / 5x (x > 0) 2. lim tan^2x / x (x >0) 3. lim cos x tan x / x (x > 0) 
calc bc (condensed
is the limit as x approaches 0 of sin3x over 3x equal to zero? 
MATH  Calculus (2)
if lim f(x) = a^3 x>a and if lim g(x) = a^2 x>a calculate the following limit: lim f(x)*(xa)/(x^3a^3)*g(x) = x>a 
Calculus
Find the following limits algebraically or explain why they don’t exist. lim x>0 sin5x/2x lim x>0 1cosx/x lim x>7 x7/x7 lim x>7 (/x+2)3/x7 lim h>0 (2+h)^38/h lim t>0 1/t  1/t^2+t 
Calculus. Limits. Check my answers, please! :)
4. lim (tanx)= x>pi/3 (sqrt3) 1 (sqrt3) ***1 The limit does not exist. 5. lim x= x>2 2 ***2 0 1 The limit does not exist. 6. lim [[x]]= x>9/2 (Remember that [[x]] represents the greatest integer function of x.) 4 … 
Check my CALCULUS work, please! :)
Question 1. lim h>0(sqrt 49+h7)/h = 14 1/14*** 0 7 1/7 Question 2. lim x>infinity(12+x3x^2)/(x^24)= 3*** 2 0 2 3 Question 3. lim x>infinity (5x^3+x^7)/(e^x)= infinity*** 0 1 3 Question 4. Given that: x 6.8 6.9 6.99 … 
Calculus
Find the limit. lim 5x/(x^225) x>5 Here is the work I have so far: lim 5x/(x^225) = lim 5x/(x5)(x+5) x>5 x>5 lim (1/x+5) = lim 1/10 x>5 x>5 I just wanted to double check with someone and see if the answer … 
PreCalculus
Which of the following shows the correct notation for “The limit of x^2  1 as x approaches 3. A. lim x^21 x>3 B. lim3 x>x^21 C. lim(x^23) x>x^21 D. lim(x^21) x>3 Thank you