college physics

posted by .

im looking for steps in how to solve this type of problem also what else can the teacher add to make it difficult, like a spring instead of rope, or the block breaking off and how would you go about solving it thank you

Two blocks are fastened to the
ceiling of an elevator. The
elevator accelerates upward at
2.00 m/s2. Find the tension in
each rope.

• college physics -

Draw a free body diagram.
The rope has to provide force to hold the weight, and to provide acceleartion.
Tension=mg+ma
Now the mass in each equation is the mass that rope is pulling. For the top rope, both masses. For the bottom, one mass.

• college physics -

The net force exerted on the block must be m a, where a is the acceleration. If we choose the upward direction to be positive, we have:

m a = -mg + F_rope

where F_rope is the force exerted by the rope in the upward direction. This means that:

F_rope = m (g+a)

F_rope is also the tension in the rope. The definition of tension is as follows. If you consider a rope, you can take some arbitrary point in the rope. Then, you can ask how hard is the part of the rope above this point pulling on the part of the rope below this point.

Now, F_rope is the force that the rope is exerting on the block. So, by action equals minus reaction, this means that the block is exerting a force of minus F_rope on the rope.

Then focus on the part of the rope from the block to the chosen point p in the rope. If the part above point p pulls with force F_p, then the total force exerted on the rope below point p is:

F = F_p - F_rope - m_p g

where m_p is the mas of the part of the rope. This must be equal to the acceleraton of the rope of a = 2 m/s^2 times m_p:

F_p - F_rope - m_p g = m_p a ----->

F_p = F_rope + m_p(a+g)
Now, if the mass of the rope is very small we can ignore the last term. Then we have:

F_p = F_rope

So, at any point in the rope, the part of the rope above the point exerts a force of F_rope to the part below the rope.

Similar Questions

1. Physics

A 250 g block is dropped onto a relaxed veritcal spring that has a spring constant of k=2.5 N/cm. The block becomes attached to the spring and compresses the spring 12 cm befor momentarily stopping. While the spring is being compressed, …
2. physics

A 250 g block is dropped onto a relaxed veritcal spring that has a spring constant of k=2.5 N/cm. The block becomes attached to the spring and compresses the spring 12 cm befor momentarily stopping. While the spring is being compressed, …
3. physics

A 12 kg block is released from rest on a 30 degree fricitonless incline. Below the block is a spring that can be compressed 2 cm by a force of 270 N. The block momentarily srops when it compresses the spring by 5.5 cm. a) How far does …

I couldn't find the sets of factors that add up to -13 in this problem. I have to solve this problem by factoring, not anything like the -b/2a or anything. Plz help, anything is greatly appreciated! x^2-13x+36 Thx for helping ppl! …
5. Physics

I am stumped on this homework problem and would like help at least to get me thinking in the right direction: It is a 2-D problem where a spring "plunger" is being used to propel a block forward. More specifically: the block rests …
6. physics

I would like to thoroughly understand each steo to solve this. In 0.750s, a 7.0kg block is pulled through a distance of 4.0m on a frictionless horizontal surface from rest. the block has a constant acceleration and is pulled by means …
7. Physics

When the three blocks in the figure below are released from rest, they accelerate with a magnitude of 0.370 m/s2. Block 1 has mass M, block 2 has 5M, and block 3 has 5M. What is the coefficient of kinetic friction between block 2 and …
8. Physics

Problem 4: A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of k= 2.5 N/cm. The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is …
9. College Physics

A rope can withstand a maximum tension force of 500N before breaking. If we use the rope to pull a 24 kg bucket of water from a well, what is the maximum acceleration upward we can use without breaking the rope?
10. Physics

A spring has a spring constant that is 120 N/m, and has a 0.1 kg block attached to it. The spring and mass sit on a horizontal surface that has no friction. The block is pulled 0.2 m and then released. Please find the frequency of …

More Similar Questions