physics
posted by chirayu .
An oscillator consists of a block attached to a spring (k = 299 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0817 m, v = 16.9 m/s, and a = 108 m/s2. Calculate (a) the frequency (in Hz) of oscillation, (b) the mass of the block, and (c) the amplitude of the motion

(a) The frequency is
f = sqrt(k/m)/(2 pi)
You know k but do not know m. Get m from
m = F/a = k x/a = 299*0.0817/(108)= 0.226 kg
Now you can solve for f.
(b) You have m already
(c) At max amplitude X,
(1/2) k X^2 = total energy
= (1/2)m v^2 + (1/2) k x^2
where v and x are initial values.
Solve for X
Respond to this Question
Similar Questions

physics
a simple harmonic oscillator consists of a block of mass 2 kg attached to a spring of spring constant 100 N/m. when t=1 s, the position and velocity of the block are x=.129 m and v=3.415 m/s. A) what is the amplitude i figured that … 
physics
An oscillator consists of a block attached to a spring (k = 299 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0817 m, v = 16.9 m/s, and a = … 
physics
An oscillator consists of a block attached to a spring (k = 299 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0817 m, v = 16.9 m/s, and a = … 
college physics
An oscillator consists of a block attached to a spring (k = 299 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0817 m, v = 16.9 m/s, and a = … 
physics
An oscillator consists of a block attached to a spring (k = 299 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0817 m, v = 16.9 m/s, and a = … 
physics
A simple harmonic oscillator consists of a block of mass 4.40 kg attached to a spring of spring constant 110 N/m. When t = 1.00 s, the position and velocity of the block are x = 0.126 m and v = 4.120 m/s. (a) What is the amplitude … 
physics
A simple harmonic oscillator consists of a block of mass 4.40 kg attached to a spring of spring constant 110 N/m. When t = 1.00 s, the position and velocity of the block are x = 0.126 m and v = 4.120 m/s. (a) What is the amplitude … 
Physics
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring of spring constant 390 N/m. When t = 2.30 s, the position and velocity of the block are x = 0.173 m and v = 2.830 m/s. (a) What is the amplitude … 
physics
A simple harmonic oscillator consists of a block of mass 1.20 kg attached to a spring of spring constant 190 N/m. When t = 1.80 s, the position and velocity of the block are x = 0.124 m and v = 3.190 m/s. (a) What is the amplitude … 
physics
At t = 0 a block with mass M = 5 kg moves with a velocity v = 2 m/s at position xo = .33 m from the equilibrium position of the spring. The block is attached to a massless spring of spring constant k = 61.2 N/m and slides on a frictionless …