Physics

posted by .

Consider the system shown in the figure with m1 = 25.00 kg, m2 = 10.20 kg, R = 0.18 m, and the mass of the uniform pulley M = 5.00 kg. Object m2 is resting on the floor, and object m1 is 4.00 m above the floor when it is released from rest. The pulley axis is frictionless. The cord is light, does not stretch, and does not slip on the pulley.

a) Find the time interval for m1 to hit the ground
b) Find the time interval if the pulley were massless.

Please help me out. This is the only problem I REALLY DON'T GET!!

  • Physics -

    The system is an Atwood machine, by the way.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    The two masses (m1 = 5.0 kg and m2 = 3.0 kg) in the Atwood's machine shown in Figure 10-23 are released from rest, with m1 at a height of 0.87 m above the floor. When m1 hits the ground its speed is 1.4 m/s. Assume that the pulley …
  2. Physics

    The two masses (m1 = 5.0 kg and m2 = 3.0 kg) in the Atwood's machine shown in Figure 10-23 are released from rest, with m1 at a height of 0.91 m above the floor. When m1 hits the ground its speed is 1.5 m/s. Assume that the pulley …
  3. physics

    Consider the system shown in the figure below with m1 = 30.0 kg, m2 = 13.7 kg, R = 0.110 m, and the mass of the pulley M = 5.00 kg. Object m2 is resting on the floor, and object m1 is 4.60 m above the floor when it is released from …
  4. physics

    The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
  5. physics

    The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
  6. physics

    The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
  7. physics

    The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
  8. physics

    The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
  9. physics

    The system shown in the figure below consists of a m1 = 5.52-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging …
  10. Physics

    The two masses (m1 = 5.0 kg and m2 = 3.0 kg) in the Atwood's machine shown in the figure are released from rest, with m1 at a height of 0.91 m above the floor. When m1 hits the ground its speed is 1.0 m/s. Assume that the pulley is …

More Similar Questions