# physics

posted by .

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting cord taut, what is their total kinetic energy when block B has fallen 27 cm? and in ths figure block b is hanging down and block A is on inclined.

• physics -

The increased (and total) kinetic energy equals the lost potential emergy. If block B has fallen 0.27 m vertically, block A has moved up the incline for an altitude change of 0.27 sin 26 = 0.1184 m

Total P.E. lost = 2.7*9.8*0.27 - 1.3*9.8*0.1184 = 7.14 - 1.51 J = 5.63 J
That equals the total K.E. increase,
(1/2)(MA + MB)*V^2

• physics -

thank u so much for help Drwls!!!!!!!!!!1

• physics -

The increased (and total) kinetic energy equals the lost potential emergy. If block B has fallen 0.27 m vertically, block A has moved up the incline for an altitude change of 0.27 sin 26 = 0.1184 m

Total P.E. lost = 2.7*9.8*0.27 - 1.3*9.8*0.1184 = 7.14 - 1.51 J = 5.63 J
That equals the total K.E. increase,
(1/2)(MA + MB)*V^2

## Similar Questions

1. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
2. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
3. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
4. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
5. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
6. ### Physics

A block P of mass 2.75 kg is lying on a rough inclined plane of angle è=0.87 radians. Block P is attached via a model string that passes over a model pulley to a second block Q of unknown mass M kg hanging vertically. The coefficient …
7. ### Physics

A 0.9-kg block (mass m) and a second block (mass M) are both initially at rest on a frictionless inclined plane. Mass M rests against a spring that has a force constant of 12.2 kN/m. The distance d along the plane between the two blocks …
8. ### physics

A block of mass m1 = 3.56 kg on a frictionless plane inclined at angle θ = 34.1° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.72 kg hanging vertically (see the figure). (a) What …
9. ### physics

Acceleration of a Mass in a Pulley System Block 1 of mass m1 slides on a frictionless plane inclined at angle θ with respect to the horizontal. One end of a massless inextensible string is attached to block 1. The string is wound …
10. ### AP Physics

Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and the …

More Similar Questions

Post a New Question