physics

posted by .

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting cord taut, what is their total kinetic energy when block B has fallen 27 cm and in ths block b is hanging down? i jus wanted to ask that difference PE=final KE means
mass of a*g*h-mass of b*g*hsin26=totalKE. is this right? bcause i m nt getting right answer. for a height should be h= 0.27cos26 and for b height=0.27? figure is wat u assumed that block b is hanging. bt i didn't gt right ans

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
  2. physics

    In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
  3. physics

    In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
  4. physics

    In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
  5. physics

    In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the connecting …
  6. Physics

    A block P of mass 2.75 kg is lying on a rough inclined plane of angle è=0.87 radians. Block P is attached via a model string that passes over a model pulley to a second block Q of unknown mass M kg hanging vertically. The coefficient …
  7. Physics

    A 0.9-kg block (mass m) and a second block (mass M) are both initially at rest on a frictionless inclined plane. Mass M rests against a spring that has a force constant of 12.2 kN/m. The distance d along the plane between the two blocks …
  8. physics

    A block of mass m1 = 3.56 kg on a frictionless plane inclined at angle θ = 34.1° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.72 kg hanging vertically (see the figure). (a) What …
  9. physics

    Acceleration of a Mass in a Pulley System Block 1 of mass m1 slides on a frictionless plane inclined at angle θ with respect to the horizontal. One end of a massless inextensible string is attached to block 1. The string is wound …
  10. AP Physics

    Block A (mass 40 kg) and block B (mass 80 kg) are connected by a string of negligible mass as shown in the figure. The pulley is frictionless and has a negligible mass. If the coefficient of kinetic friction between block A and the …

More Similar Questions