Calc

posted by .

A particle is moving along the curve y= 3 \sqrt{3 x + 4}. As the particle passes through the point (4, 12), its x-coordinate increases at a rate of 4 units per second. Find the rate of change of the distance from the particle to the origin at this instant.

  • Calc -

    is the curve
    y = 3/√(3x + 4) ??

    if so, then the particle does not pass through your given point (4,12)

    after you establish where your error is,
    the method to solve the problem would be:

    differentiate your equation with respect to t

    your differential equation contains a dy/dt and a dx/dt term.
    sub in dx/dt = 4 when x = ? and y = ? from the correct given point.

    now the distance from the origin of a general point on the curve is

    d^2 = x^2 + y^2
    2d(dd/dt) = 2x(dx/dt) + 2y(dy/dt)

    sub in all the stuff from above

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus 1

    A particle is moving along the curve y= 4 \sqrt{3 x + 1}. As the particle passes through the point (1, 8), its x-coordinate increases at a rate of 2 units per second. Find the rate of change of the distance from the particle to the …
  2. calculus

    A particle is moving along the curve y=4((3x+1)^.5). As the particle passes through the point (5,16) its -coordinate increases at a rate of 2 units per second. Find the rate of change of the distance from the particle to the origin …
  3. calculus

    A particle is moving along the curve y=5sqrt(3x+1). As the particle passes through the point (5,20) its x-coordinate increases at a rate of 3 units per second. Find the rate of change of the distance from the particle to the origin …
  4. Maths

    A particle is moving along the curve y=4sqrt(4x+1) . As the particle passes through the point (2,12), its x-coordinate increases at a rate of 2 units per second. Find the rate of change of the distance from the particle to the origin …
  5. Calculus

    A particle is moving along the curve . As the particle passes through the point , its -coordinate increases at a rate of units per second. Find the rate of change of the distance from the particle to the origin at this instant.
  6. Calculus

    A particle is moving along the curve . As the particle passes through the point , its -coordinate increases at a rate of units per second. Find the rate of change of the distance from the particle to the origin at this instant.
  7. Calculus

    A particle is moving along the curve . As the particle passes through the point , its -coordinate increases at a rate of units per second. Find the rate of change of the distance from the particle to the origin at this instant.
  8. Calculus HELP

    A particle is moving along the curve y=5 sqrt (2x+6). As the particle passes through the point (5,20 , its x-coordinate increases at a rate of 5 units per second. Find the rate of change of the distance from the particle to the origin …
  9. Calc

    A particle is moving along the curve y= 4 sqrt{2 x + 2}. As the particle passes through the point (1, 8), its x-coordinate increases at a rate of 5 units per second. Find the rate of change of the distance from the particle to the …
  10. Math

    A particle is moving along the curve y= 2 \sqrt{4 x + 4}. As the particle passes through the point (3, 8), its x-coordinate increases at a rate of 5 units per second. Find the rate of change of the distance from the particle to the …

More Similar Questions