Maths
posted by TP .
Could someone help me with this question
Write in polar form : sinx  i cosx
I've come up to this point, and it's wrong, can't someone please help?
=sin(pie/2x)icos(pie/2x)
=cosxisinx
=cis(x)
But the answer is cis(xpie/2)

almost
sinx = cos(pi/2  x) and cosx = sin(pi/2  x)
that is, the sine of any angle equals the cosine of its compliment.
so sinx  i cosx
= cos(pi/2  x)  i sin(pi/2  x)
= cis(pi/2  x)
this webpage has some good examples with simple diagrams to show your topic
http://www.intmath.com/Complexnumbers/4_Polarform.php
Respond to this Question
Similar Questions

PreCalc
Trigonometric Identities Prove: (tanx + secx 1)/(tanx  secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x  1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1  cosx)/cosx)/((sinx … 
Simplifying with Trigonometry Identities
Hi, I am a senior in High School having a really difficult time with two problems. I have to prove using the trigonometric identities that they equal each other but I am having a really hard time trying to get them to equal each other. … 
Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side … 
Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
maths  trigonometry
I've asked about this same question before, and someone gave me the way to finish, which I understand to some extent. I need help figuring out what they did in the second step though. How they got to the third step from the second. … 
Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] = [cosx(1sinx]/[cosx(1+tanx] … 
Trigonometry
Prove the following trigonometric identities. please give a detailed answer because I don't understand this at all. a. sin(x)tan(x)=cos(x)/cot^2 (x) b. (1+tanx)^2=sec^2 (x)+2tan(x) c. 1/sin(x) + 1/cos(x) = (cosx+sinx)(secx)(cscx) d. … 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know … 
Calculus 2 Trigonometric Substitution
I'm working this problem: ∫ [1tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)[(sin^2x/cos^2x)/(1/cosx) ∫cosxsinx(sinx/cosx) ∫cosx∫sin^2(x)/cosx sinx∫(1cos^2(x))/cosx sinx∫(1/cosx)cosx sinx∫secx∫cosx … 
Trigonometry
How do you simplify: (1/(sin^2xcos^2x))(2/cosxsinx)?