math
posted by Sh .
solve each identity algebraically
1)(1tanx)/(1cotx)=tanx
2)(1+cotx)/(1+tanx)=cotx

math 
Reiny
my usual approach is to start with the "messy" side, and change everything to sines and cosines.
LS
=(1 sinx/cosx)/(1  cosx/sinx)
= (cosxsinx)/cosx * (sinx)/ (sinx  cosx)
= (1)sinx/cosx
= tanx
perform similar steps for the second one, bet you'll get it 
math 
Sh
I got (1 sinx/cosx)/(1  cosx/sinx)
but how did (1 sinx/cosx) turn to (cosxsinx)/cosx? 
math 
Sh
nevermind, found out :) thanks
Respond to this Question
Similar Questions

Math
1)A piano tuner uses a tuning fork. If middle C has a frequency of 264 vibrations per second, write an equation in the form d=sinw(t) for the simple harmonic motion. 2) Verify the identity tan^2Xcot^2X/tanX+cotX=tanXcotX I'm not … 
PreCalc
How do I solve this? My work has led me to a dead end. tan(45x) + cot(45x) =4 my work: (tan45  tanx)/(1+ tan45tanx) + (cot45  cotx)/(1 + cot45cotx) = 4 (1tanx)/(1+tanx) + (1cotx)/(1+cotx) = 4 Then I found a common denominator, 
Trig
Verify that each of the following is an identity. tan^2xsin^2x=tan^2xsin^2x I can get it down to cos^2 on the right, but cannot get it to work out on the left. secx/cosx  tanx/cotx=1 On the left I got down to 1tan^2, but that clearly … 
trig
verify the identity: tan^2x(1+cot^2x)=1/1sin^2x Verify the Id: tanx + cotx/ tanxcotx = (1/sin^2xcos^2x) 
trig
verify the identity (tanx+cotx) (1) __________ = ______________ (tanxcotx) (sin^2xcos^2x) 
trigonometry
tanxcotx/tanx+cotx=12cos squardx 
calculus
1/tanx + 1/cotx =tanx +cotx verify 
matj
prove that (cotx+tanx)(cotxtanx) = 1/(sin^2 x)  1/(cos^x) 
trig
Verify the trigonometric identity. Please show all steps. tanxcotx/tanx+cotx=sin^2xcos^2x 
a math
Prove cotx1/cotx+1 = sec2x  tan2x I prove till cotx1/cotx+1 =1/1+tanx  tanx/1+tanx