physics oscillator energy

posted by .

a block of wood of mass 0.25kg is attached to one end of a spirnf og constant stiffness 100N/m. The block can oscillate horizontally on a frictionless surface, the other end of the spring being fixed.
a) calculate the maximum elastic potential energy of the system for a horizontal oscillation of amplitude 0.20m.

i tried to use the equation
Ep=(1/2)*(mass)*(omega^2)*(displacement)
but i wasn't sure if this was the right way to go about it because i couldn't figure out how i could find out the angular frequency

thanks for your help!

  • physics oscillator energy -

    Use: Ep = (1/2)kx^2 to get the elastic potential.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    An ideal massless spring is fixed to the wall at one end. A block of mass M attached to the other end of the spring oscillates with amplitude A on a frictionless, horizontal surface. The maximum speed of the block is V_m. The force …
  2. Physics

    A block is connected between two springs on a frictionless horizontally level track. The other end of each spring is respectively anchored to a vertical pin set at opposite ends of the track. The spring constant for one spring is k …
  3. physics

    In Figure (a), a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring …
  4. Physics

    An ideal spring with a stiffness of 329 N/m is attached to a wall, and its other end is attached to a block that has a mass of 15.0 kg. The spring/block system is then stretched away from the spring's relaxed position until 57.0 J …
  5. Physics - Spring

    Suppose a 1.5kg block of wood is slid along a floor and it compresses a spring that is attached horizontally to a wall. The spring constant is 555N/m and the block of wood is traveling 9.0m/s when it hits the spring. Assume that the …
  6. AP PHYSICS MECH.

    In Figure 9-62, block 2 (mass 1.3 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 160 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 2.1 kg), traveling at …
  7. PHYSICS

    A block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched …
  8. physics

    A physics student pulls a block of mass m = 23 kg up an incline at a slow constant velocity for a distance of d = 4 m. The incline makes an angle q = 25° with the horizontal. The coefficient of kinetic friction between the block and …
  9. Physics

    A spring fixed to a wall is attached to a 6 kg block of wood on the other end. The block rests on a frictionless surface. The spring with spring constant 100 N/m is compressed by 0.1 m and releases. With what frequency and period will …
  10. Physics

    A 15.0 gram bullet with a speed of v is fired into a 400 gram block of wood that is initially at rest on a surface. The coefficient of kinetic friction between the block and the surface is 0.250. The block of wood is attached to a …

More Similar Questions