calc
posted by alexis .
Suppose a curve is traced by the parametric equations
x=1sin(t)
y=183cos^2(t)4sin(t)
At what point (x,y) on this curve is the tangent line horizontal?

When dy/dx = (dy/dt)/(dx/dt) = 0
Do the calculation and first find the value of t. Use that co calculate x and y
Respond to this Question
Similar Questions

Calc.
sketch the curve using the parametric equation to plot the points. use an arrow to indicate the direction the curve is traced as t increases. Find the lenghth of the curve for o<t<1. Find an equation for the line tangent to the … 
calc
for the parametric curve defined by x=32t^2 and y=52t ...sketch the curve using the parametric equation to plot of the point. use an arrow to indicate the direction of the curve for o<t<1. Find an equation for the line tangent … 
Help Calc.!
original curve: 2y^3+6(x^2)y12x^2+6y=1 dy/dx=(4x2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the curve b) the line through the origin with the slope .1 is tangent to the curve at P. Find x and y of point … 
please help; calc
original curve: 2y^3+6(x^2)y12x^2+6y=1 dy/dx=(4x2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the curve b) the line through the origin with the slope .1 is tangent to the curve at P. Find x and y of point … 
Need help fast on calc
original curve: 2y^3+6(x^2)y12x^2+6y=1 dy/dx=(4x2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the curve b) the line through the origin with the slope .1 is tangent to the curve at P. Find x and y of point … 
Calculus
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=4cos(t) y=4sin(t) z= 10cos(2t) (2sqrt2,2sqrt2,0) 
Calc 3
Find the parametric equations for the tangent line to the curve with the given parametric equations at specified point. x= e^t y=te^t z=te^(t^2) (1,0,0) 
Calc 3
Find the parametric equations for the tangent line to the curve with the given parametric equations at specified point. x= e^t y=te^t z=te^(t^2) (1,0,0) 
Calc 3
Find parametric equations for the tangent line to the curve of intersection of the paraboloid z = x^2 + y^2 and the ellipsoid 6x^2 + 5y^2 + 7z^2 = 39 at the point (−1, 1, 2) 
calculus
Notice that the curve given by the parametric equations x=25−t^2 y=t^3−16t is symmetric about the xaxis. (If t gives us the point (x,y),then −t will give (x,−y)). At which x value is the tangent to this curve horizontal?