Math Calculus
posted by Desperate .
The Image Theorem:
The image theorem, a corollary of the intermediate value theorem, expresses the property that if f is continuous on the interval [a, b], then the image (the set of yvalues) of f on [a,b] is all real numbers between the minimum of f(x) on [a,b], inclusive. USE THE EXTREME VALUE THEOREM AS A LEMMA (A PRELIMINARY RESULT) TO PROVE THE IMAGE THEOREM.
Respond to this Question
Similar Questions

calculus
Verify that the hypotheses of the MeanValue Theorem are satisfied on the given interval, and find all values of c in that interval that satisfy the conclusion of the theorem. f(x)=x^23x; [2,6] 
calculus
Verify that the Intermediate Value theorem applies to the indicated interval and find the value of c guaranteed by the theorem. f(x) = x^2  6x + 8, [0,3], f(c) = 0 I have no idea how to use the theorem :( 
calculus
Show that the function f(x)=4x^3−15x^2+9x+8 satisfies the three hypotheses of Rolle’s theorem on the interval [0,3]. Then find the values of c on the interval [0,3] that are guaranteed by Rolle’s theorem. Give your answer … 
calculus
Referring to the Mean Value Theorem and Rolle's Theorem, how can I tell if f is continuous on the interval [a,b] and differentiable on (a,b). 
Calculus
Verify that the hypotheses of the MeanValue Theorem are satisfied for f(x) = √(16x^2 ) on the interval [4,1] and find all values of C in this interval that satisfy the conclusion of the theorem. 
Math  Calculus
Show that the equation x^315x+c=0 has at most one root in the interval [2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues? 
Math  Calculus
Show that the equation x^315x+c=0 has at most one root in the interval [2,2]. Perhaps Rolle's Theorem, Mean Value Theorem, or Intermediate Value Theorem hold clues? 
Math
Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval. cos x = x. How do I begin this problem? 
Calculus
Verify the hypothesis of the mean value theorem for each function below defined on the indicated interval. Then find the value “C” referred to by the theorem. Q1a) h(x)=√(x+1 ) [3,8] Q1b) K(x)=(x1)/(x=1) [0,4] Q1c) Explain … 
Calculus
Given f(x) = 1/x, find all c in the interval [3, ½] that satisfies the Mean Value Theorem. A. c= sqrt(3/2) B. c= +or sqrt(3/2) C. The Mean Value Theorem doesn’t apply because f is not continuous at x=0 D. The Mean Value Theorem …