Calculus

posted by .

Consider the function f(x)=sin(1/x)

Find a sequence of x-values that approach 0 such that

sin (1/x)=0
sin (1/x)=1
sin (1/x)=-1

Is sin sin (1/x)=0 and sin (1/x)=-1 does not exist.

What is sin (1/x)=1 then.

How would I show the sequence of values, any help would be greatly appreciated.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. tigonometry

    expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by -b and using that cos(-b)= cos(b) sin(-b)= -sin(b) gives: sin(a-b) = sin(a)cos(b) - cos(a)sin(b) …
  2. algebra

    Can someone please help me do this problem?
  3. math

    Eliminate the parameter (What does that mean?
  4. Mathematics - Trigonometric Identities

    Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y …
  5. Calculus

    Consider the function f(x)=sin(1/x) Find a sequence of x-values that approach 0 such that sin (1/x)=0 sin (1/x)=1 sin (1/x)=-1 Is sin sin (1/x)=0 and sin (1/x)=-1 does not exist. What is sin (1/x)=1 then.
  6. Calculus

    Consider the function f(x)=sin(1/x) Find a sequence of x-values that approach 0 such that (1) sin (1/x)=0 {Hint: Use the fact that sin(pi) = sin(2pi)=sin(3pi)=...=sin(npi)=0} (2) sin (1/x)=1 {Hint: Use the fact that sin(npi)/2)=1 if …
  7. Calculus

    Consider the function f(x)=sin(1/x) Find a sequence of x-values that approach 0 such that (1) sin (1/x)=0 {Hint: Use the fact that sin(pi) = sin(2pi)=sin(3pi)=...=sin(npi)=0} (2) sin (1/x)=1 {Hint: Use the fact that sin(npi)/2)=1 if …
  8. TRIG!

    Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 …
  9. Calculus

    Hello, Could somebody kindly check my answer for the following question?
  10. Trigonometry

    Solve the equation for solutions in the interval 0<=theta<2pi Problem 1. 3cot^2-4csc=1 My attempt: 3(cos^2/sin^2)-4/sin=1 3(cos^2/sin^2) - 4sin/sin^2 = 1 3cos^2 -4sin =sin^2 3cos^2-(1-cos^2) =4sin 4cos^2 -1 =4sin Cos^2 - sin=1/4 …

More Similar Questions