calculus

posted by .

Use integration by parts to evaluate the integral of x*sec^2(3x).

My answer is
([x*tan(3x)]/3)-[ln(sec(3x))/9]
but it's incorrect.

u=x dv=sec^2(3x)dx
du=dx v=(1/3)tan(3x)

[xtan(3x)]/3 - integral of(1/3)tan(3x)dx
- (1/3)[ln(sec(3x))/3]
- [ln(sec(3x))/9]

What am I doing wrong?

  • calculus -

    integral of(1/3)tan(3x)dx
    = (1/3)integral of(sin3x/cos 3x) dx
    = (1/3)ln|sin 3x| + C

    then the final answer is

    (x tan3x)/3 - (1/3)ln|sin 3x| + C

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Integration

    Intergrate ¡ì sec^3(x) dx could anybody please check this answer. are the steps correct?
  2. Calculus - Integration

    Hello! I really don't think I am understanding my calc hw. Please help me fix my errors. Thank you! 1. integral from 0 to pi/4 of (tanx^2)(secx^4)dx It says u = tan x to substitute So if I use u = tan x, then my du = secx^2 then I …
  3. calculus

    find dy/dx y=ln (secx + tanx) Let u= secx + tan x dy/dx= 1/u * du/dx now, put the derivative of d secx/dx + dtanx/dx in. You may have some challenging algebra to simplify it. Use the chain rule. Let y(u) = ln u u(x) = sec x + tan x …
  4. math

    How do I derive the secant reduction rule?
  5. calculus

    Integrate: dx/sqrt(x^2-9) Answer: ln(x + sqrt(x^2 - 9)) + C I'm getting the wrong answer. Where am I going wrong: Substitute: x = 3 * sec t sqrt(x^2 - 9) = sqrt(3) * tan t dx = sqrt(3) * sec t * tan t Integral simplifies to: sec t …
  6. Calculus 12th grade (double check my work please)

    2- given the curve is described by the equation r=3cos ¥è, find the angle that the tangent line makes with the radius vector when ¥è=120¨¬. A. 30¨¬ B. 45¨¬ C. 60¨¬ D. 90¨¬ not sure A or D 2.) which of the following represents …
  7. Calculus

    Evaluate the indefinite integral integral sec(t/2) dt= a)ln |sec t +tan t| +C b)ln |sec (t/2) +tan (t/2)| +C c)2tan^2 (t/2)+C d)2ln cos(t/2) +C e)2ln |sec (t/2)+tan (t/2)| +C
  8. calculus (check my work please)

    Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)-1) dx ∫ tan(x)sec(x)[sec^4(x)-sec^2(x)] …
  9. calculus

    So I am suppose to evaulate this problem y=tan^4(2x) and I am confused. my friend did this : 3 tan ^4 (2x) d sec^ 2x (2x)= 6 tan ^4 (2x) d sec^2 (2x) She says it's right but what confuses me is she deriving the 4 and made it a three?
  10. Calculus AP

    I'm doing trigonometric integrals i wanted to know im doing step is my answer right?

More Similar Questions