calculus
posted by Integration by Parts .
Use integration by parts to evaluate the integral of x*sec^2(3x).
My answer is
([x*tan(3x)]/3)[ln(sec(3x))/9]
but it's incorrect.
u=x dv=sec^2(3x)dx
du=dx v=(1/3)tan(3x)
[xtan(3x)]/3  integral of(1/3)tan(3x)dx
 (1/3)[ln(sec(3x))/3]
 [ln(sec(3x))/9]
What am I doing wrong?

integral of(1/3)tan(3x)dx
= (1/3)integral of(sin3x/cos 3x) dx
= (1/3)lnsin 3x + C
then the final answer is
(x tan3x)/3  (1/3)lnsin 3x + C
Respond to this Question
Similar Questions

Integration
Intergrate ¡ì sec^3(x) dx could anybody please check this answer. are the steps correct? 
Calculus  Integration
Hello! I really don't think I am understanding my calc hw. Please help me fix my errors. Thank you! 1. integral from 0 to pi/4 of (tanx^2)(secx^4)dx It says u = tan x to substitute So if I use u = tan x, then my du = secx^2 then I … 
calculus
find dy/dx y=ln (secx + tanx) Let u= secx + tan x dy/dx= 1/u * du/dx now, put the derivative of d secx/dx + dtanx/dx in. You may have some challenging algebra to simplify it. Use the chain rule. Let y(u) = ln u u(x) = sec x + tan x … 
math
How do I derive the secant reduction rule? 
calculus
Integrate: dx/sqrt(x^29) Answer: ln(x + sqrt(x^2  9)) + C I'm getting the wrong answer. Where am I going wrong: Substitute: x = 3 * sec t sqrt(x^2  9) = sqrt(3) * tan t dx = sqrt(3) * sec t * tan t Integral simplifies to: sec t … 
Calculus 12th grade (double check my work please)
2 given the curve is described by the equation r=3cos ¥è, find the angle that the tangent line makes with the radius vector when ¥è=120¨¬. A. 30¨¬ B. 45¨¬ C. 60¨¬ D. 90¨¬ not sure A or D 2.) which of the following represents … 
Calculus
Evaluate the indefinite integral integral sec(t/2) dt= a)ln sec t +tan t +C b)ln sec (t/2) +tan (t/2) +C c)2tan^2 (t/2)+C d)2ln cos(t/2) +C e)2ln sec (t/2)+tan (t/2) +C 
calculus (check my work please)
Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)1) dx ∫ tan(x)sec(x)[sec^4(x)sec^2(x)] … 
calculus
So I am suppose to evaulate this problem y=tan^4(2x) and I am confused. my friend did this : 3 tan ^4 (2x) d sec^ 2x (2x)= 6 tan ^4 (2x) d sec^2 (2x) She says it's right but what confuses me is she deriving the 4 and made it a three? 
Calculus AP
I'm doing trigonometric integrals i wanted to know im doing step is my answer right?