# Math

posted by .

Use Newton's method to approximate a root of the equation 5sin(x)=x as follows.
Let x1=2 be the initial approximation.
The second approximation x2 is:
and the third approximation x3 is:

• Math -

5 sin x = x
let y = x - 5 sin x, search for y = 0
dy/dx = y' = 1 - 5 cos x
Xn+1 = Xn + y(Xn)/y'at Xn
X1 = 2
y = 2 - 5 sin 2 = 2 - 4.54 = -2.54
y'=1 - 5 cos 2 = 3.08
X2 = 2 -2.54/3.08 = 1.17

y = 1.17 - 5 sin 1.17 = -3.43
y' = 1 - 5 cos 1.17 = -.951
X3 = 1.17 -3.43/-.951 = 4.77

This is unlikely to work the way you want because you are jumping from cycle to cycle of the original sine wave

• Math -

The answers are wrong for this one.

• Math - sign wrong -

sorry, sign wrong. I drew my picture wrong
5 sin x = x
let y = x - 5 sin x, search for y = 0
dy/dx = y' = 1 - 5 cos x
Xn+1 = Xn - y(Xn)/y'at Xn
X1 = 2
y = 2 - 5 sin 2 = 2 - 4.54 = -2.54
y'=1 - 5 cos 2 = 3.08
X2 = 2 + 2.54/3.08 = 2.82

y = 2.82 - 5 sin 2.82 = 1.24
y' = 1 - 5 cos 2.82 = 5.74
X3 = 2.82 -1.24/5.74 = 2.60

• Math - sign wrong -

The answer is still wrong :(

• Math -

check my arithmetic carefully

## Similar Questions

1. ### Calculus

Use Newton's method to approximate a root of the equation (2 x^3 + 4 x + 4 =0) as follows. Let (x_1 = -1\) be the initial approximation. The second approximation (x_2) is ?
2. ### CALC

Use Newton's method to approximate a root of the equation x3+x+3=0 as follows. Let x1=–1 be the initial approximation. The second approximation x2 is _____?
3. ### calculus

Use Newton's method to approximate a root of the equation 3sin(x)=x as follows. Let x1=1 be the initial approximation. The second approximation x2 is and the third approximation x3 is
4. ### calculus

Use Newton's method to approximate a root of the equation 3sin(x)=x as follows. Let x1=1 be the initial approximation. The second approximation x2 is and the third approximation x3 is for x2 I got -1.454 which is right but I can't …
5. ### calculus

Use Newton's method to approximate a root of the equation 3sin(x)=x as follows. Let x1=1 be the initial approximation. The second approximation x2 is and the third approximation x3 is I got x2=-1.454 but can't get x3 :(
6. ### calculus, math

Use Newton's method to approximate the value of (543)^(1/5) as follows: Let x1=2 be the initial approximation. find x2 and x3 =?
7. ### Cal 1

Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given equation. (Round your answer to four decimal places.) 1/3x^3 + 1/2x^2 + 1 = 0, x_1 = −3
8. ### Calculus-Newton Method Approximation

Use Newton's method to approximate the positive value of x which satisfies x=2.3cosx Let x0=1 be the initial approximation. Find the next two approximations, x_1 and x2, to four decimal places each.
9. ### Calculus

Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given equation. (Round your answer to four decimal places.) 1/3x^3 + 1/2x^2 + 8 = 0, x1 = −3 I got -3.4808, …
10. ### Math

Use differential, (i.e. linear approximation), to approximate cube root of 64.1 as follows: Let f(x) = cube root of x. The linear approximation to f(x) at x = 64 can be written in the form y = mx+b. Compute m and b and find cube root …

More Similar Questions