Calc.
posted by Derek .
Determine the value of k so that the line with parametric equations x = 2 + 3t, y = 2 + 5t, z = k is parallel to the plane with equation 4x + 3y – 3z 12 = 0

let k= a+bt
then the line is:
x = 2 + 3t
y = 2 + 5t
z = a + bt and its direction vector is (3,5,b)
If the line is parallel to the plane then it must be perpendicular to the normal of the plane, that is
(4,3,3)∙(3,5,b) = 0
12 + 15  3b = 0
b = 9
so z = a + 9t
No matter what the value of a, the line will be parallel to the plane.
trying to intersect the line with the plane we get
4(2+3t) + 3(2+5t)  3(a+9t) = 12
the t's drop out and we get a = 10/3
so if a = 10/3 the line is parallel to but also on the plane, while for any other value of a, the line will not be on the plane, but parallel to it
so possible values of k could be just 9t, or 5+9t, or 1+9t, etc 
The vector 4i + 3j  3k is normal to the given plane. (k is a unit vector here, not the unknown you are looking for, which I will call K). If the line represented by the parametric equations is parallel to the plane, it must be perpendicular to the normal to the plane.
The vector parallel to the line is defined by
t = (x2)/3 = (y+2)/5 , with no component along the z axis. The line is in the x,y plane regardless of the value of K. Its vector components are
3i + 5j +0k
One can write an equation that requires the two lines to be perpendicular, but it will not involve your unknown K, and there will be no solution, because a line with only x and y components cannot be perpendicular to the plane defined by 4x + 3y – 3z 12 = 0
Are you sure you did not omit a term that involves t in the parametric definition of the line? Is it really z = K ? 
Reiny treats your k as an unknown a + bt parametric term, so there are really two unknowns in that case. I treat k as an unknown constant. In Reiny's czse, solutions can be obtained, as he has done.
You should have been clearer about what k is supposed to represent. 
I just copied the question as it was...I tried asking a friend and the teacher about k. When I tried to work it out, I assumed that the direction vector was 0, because it was not k+t or any number at all, but I am still unsure. Thanks.
Respond to this Question
Similar Questions

Vectors
3 planes; $: x+2y2z6=0 %: 2xy+z+8=0 £: 2xy+2z+3=0 (a)(i)Find the cartesian equation for the plane @ parallel to $ and containing the point (1,1,2) (ii)Calculate the distance between $ and @ (b)(i)Find the parametric equations … 
vectors
3 planes; $: x+2y2z6=0 %: 2xy+z+8=0 £: 2xy+2z+3=0 (a)(i)Find the cartesian equation for the plane @ parallel to $ and containing the point (1,1,2) (ii)Calculate the distance between $ and @ (b)(i)Find the parametric equations … 
Math
What does it mean if a line in R^3 is parallel to the xyplane but not to any of the axes. I really don't know what this means in terms of how the parametric and symmetric equations of the line should look. Please help. 
Math
What does it mean if a line in R^3 is parallel to the xyplane but not to any of the axes. I really don't know what this means in terms of how the parametric and symmetric equations of the line should look. Please help. 
Calc 3
Find the parametric equations for the tangent line to the curve with the given parametric equations at specified point. x= e^t y=te^t z=te^(t^2) (1,0,0) 
Calc 3
Find the parametric equations for the tangent line to the curve with the given parametric equations at specified point. x= e^t y=te^t z=te^(t^2) (1,0,0) 
math
find the parametric equations of the line that passes through the point p(2,3,4)& parallel to the xzplane 
Calculus
Find parametric equations for the line through the point (0,2,2)that is parallel to the plane x+y+z = 2 and perpendicular to the line x=1+t, y=2−t, z=2t. (Use the parameter t.) (x(t), y(t), z(t)) = 
mathematics
If the line l has parametric equations x=53t, y=2+t, z=1+9t, find the parametric equations for the line through p(5,4,3) that is parallel to l. 
calc
Give the equation of a plane containing the points (1, 0, 0) and (1, 2, 1) and parallel to the line whose equations are x = y, z = so i found n to be <0,1,2> then i used the equation n(rro) and got yx+2z. the answer is xy+2z …