Fourier Sine Series Q
posted by Neutral .
I have the function f(x) = cos(x) on the interval from 0 to pi and I need to comput the Fourier sine series.
I have the integral of cos(x) multiplied by sin(nx), I can't figure out a way to integrate them! The "n" gets in the way, what do I do?

first sketch a graph of cos x and sin x, sin 2x, sin 3x, sin 4x
in the interval from 0 to pi
You will notice that for n = 1 for example, the plus contribution between 0 and pi/2 cancels the negative contribution between pi/2 and pi
in fact for cos 1x * sin n x dx, only even values of n will contribute for the integral from 0 to pi.
The general rule for this definite integral is:
integral from 0 to pi of
sin ax cos bx dx
is:
2a/(a^2b^2) if (ab) is odd
0 if (ab) is even
so here:
2/(1n^2) if n is even
0 if n is odd 
So basically, that is the coefficient "bn" that I place in the summation from n=1 to infinity of sin(nx)?
If that is correct, thanks, I was going into a complicated page of integration . . . 
yes :)

Okay, I got it, thanks Damon.
Respond to this Question
Similar Questions

Math (College Level Mathematics)
Fourier sin series for f(x) = 1, 0 < x < Pie is given by 1 = 4/n E 1/ (2n1) times sin (2n1) x, (0 < x < n). Using this, find the Fourier sinc series for f(x)= 1, on 0 < x < c where c > 0. Then find the Fourier … 
Fourier Series
A periodic function f(t), with period 2π is defined as,f(t) = c for 0 < t < πf(t) = c for π < t < 0where c = 1.4, Taking π = 3.142, calculate the Fourier sine series approximation up to the 5th harmonics … 
math
Anyone can help me on this qns? The Fourier series expansion for the periodic function,f(t) = sin tis defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the 
math
The Fourier series expansion for the periodic function,f(t) = sin tis defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the 6th harmonics when t = 1.09. Give … 
math
The Fourier series expansion for the periodic function,f(t) = sin tis defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the 6th harmonics when t = 1.09. Give … 
Math, Fourier Series
For Fourier Series of f(x)=sinx which is an even function, bn should be 0. However, I solved that b1=1 while the rest of the terms =0, meaning bn=0. Is there a mistake? 
Math Fourier series
Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far as … 
Math Fourier series
Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far as … 
Math Fourier series
Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far as … 
Calculus
Hi, could someone please help me with this question?