calculus

posted by .

let R be the region bounded by the graphs of y = sin(pie times x) and y = x^3 - 4.

a) find the area of R

b) the horizontal line y = -2 splits the region R into parts. write but do not evaluate an integral expression for the area of the part of R that is below this horizontal line.

c) The region R is the base of a solid. For this solid, each cross section perpendicular to x-axis is a square. Find the volume of this solid.

d) the region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by h(x)=3-x. find the volume of the water in the pound.

  • calculus -

    A. Area is the Integral of (sin(pi*X)-(X^3-4X)) from 0 to 2 which should equal 4.
    B. The horizontal line y=-2 intersects the graph of X^3-4X at the points .539 and 1.675. The area is going to be the Integral of (sin(pi*X)-(X^3-4X)) from .539 to 1.675
    C. Volume= the integral of (sin(pi*X)-(X^3-4X))^2 from 0 to 2 because the height is proportional to the width of the base. this should equal 9.978

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math

    let R be the region bounded by the graphs of y = sin(pie times x) and y = x^3 - 4. a) find the area of R b) the horizontal line y = -2 splits the region R into parts. write but do not evaluate an integral expression for the area of …
  2. calculus

    Let A be the bounded region enclosed by the graphs of f(x) = x , g(x) = x3 . Find the volume of the solid obtained by rotating the region A about the line x + 2 = 0.
  3. Calculus AB

    Let R be the region bounded by the graphs of y=sin(pi x) and y=(x^3)-4x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line y=-2, x=2, x=-1. Write, but do not evaluate, an integral expression for the area.
  4. calculus

    Sketch the region bounded by the graphs of the algebraic functions & find the area of the region: f(x)=10/x, x=0 , y=2, y=10 I started idk how to keep going y = 10/x for x -->x = 10/y
  5. calculus

    find the volume of the solid bounded above by the surface z=f(x,y) and below by the plane region R f(x,y)=2x^2 y;R is the region bounded by the graphs of y=x and y=x^2
  6. calculus

    1. Find the area of the region bounded by f(x)=x^2 +6x+9 and g(x)=5(x+3). Show the integral used, the limits of integration and how to evaluate the integral. 2. Find the area of the region bounded by x=y^2+6, x=0 , y=-6, and y=7. Show …
  7. Calculus

    1. Find the area of the region bounded by the curves and lines y=e^x sin e^x, x=0, y=0, and the curve's first positive intersection with the x-axis. 2. The area under the curve of y=1/x from x=a to x=5 is approximately 0.916 where …
  8. Calculus

    Let f be the function given by f(x)=(x^3)/4 - (x^2)/3 - x/2 + 3cosx. Let R be the shaded region in the second quadrant bounded by the graph of f, and let S be the shaded region bounded by the graph of f and line l, the line tangent …
  9. Calculus AP

    Let R be the region bounded by the graphs of y=cos((pi x)/2) and y=x^2-(26/5)x+1. A. Find the area of R. B. The vertical line x=k splits the region R into two equal parts. Write, but do not solve, an equation involving integrals that …
  10. calculus

    3). The shaded region is bounded by the y-axis and the graphs of y=1+√x, y=2. Find the volume of the solid obtained by rotating this region around the x-axis. Answer choices: 7/6pi, 4/3pi, 11/6pi, 5/3pi, 13/6pi, 5/6pi 4). Find …

More Similar Questions